feat(frontends/lean): use 'this' as the name for anonymous 'have'-expression
This commit is contained in:
parent
784184a137
commit
92f8eb173b
12 changed files with 117 additions and 106 deletions
|
@ -238,16 +238,16 @@ definition decidable_perm_aux : ∀ (n : nat) (l₁ l₂ : list A), length l₁
|
||||||
(assume xinl₂ : x ∈ l₂,
|
(assume xinl₂ : x ∈ l₂,
|
||||||
let t₂ : list A := erase x l₂ in
|
let t₂ : list A := erase x l₂ in
|
||||||
have len_t₁ : length t₁ = n, begin injection H₁ with e, exact e end,
|
have len_t₁ : length t₁ = n, begin injection H₁ with e, exact e end,
|
||||||
assert len_t₂_aux : length t₂ = pred (length l₂), from length_erase_of_mem xinl₂,
|
assert length t₂ = pred (length l₂), from length_erase_of_mem xinl₂,
|
||||||
assert len_t₂ : length t₂ = n, by rewrite [len_t₂_aux, H₂],
|
assert length t₂ = n, by rewrite [this, H₂],
|
||||||
match decidable_perm_aux n t₁ t₂ len_t₁ len_t₂ with
|
match decidable_perm_aux n t₁ t₂ len_t₁ this with
|
||||||
| inl p := inl (calc
|
| inl p := inl (calc
|
||||||
x::t₁ ~ x::(erase x l₂) : skip x p
|
x::t₁ ~ x::(erase x l₂) : skip x p
|
||||||
... ~ l₂ : perm_erase xinl₂)
|
... ~ l₂ : perm_erase xinl₂)
|
||||||
| inr np := inr (λ p : x::t₁ ~ l₂,
|
| inr np := inr (λ p : x::t₁ ~ l₂,
|
||||||
assert p₁ : erase x (x::t₁) ~ erase x l₂, from erase_perm_erase_of_perm x p,
|
assert erase x (x::t₁) ~ erase x l₂, from erase_perm_erase_of_perm x p,
|
||||||
have p₂ : t₁ ~ erase x l₂, by rewrite [erase_cons_head at p₁]; exact p₁,
|
have t₁ ~ erase x l₂, by rewrite [erase_cons_head at this]; exact this,
|
||||||
absurd p₂ np)
|
absurd this np)
|
||||||
end)
|
end)
|
||||||
(assume nxinl₂ : x ∉ l₂,
|
(assume nxinl₂ : x ∉ l₂,
|
||||||
inr (λ p : x::t₁ ~ l₂, absurd (mem_perm p !mem_cons) nxinl₂))
|
inr (λ p : x::t₁ ~ l₂, absurd (mem_perm p !mem_cons) nxinl₂))
|
||||||
|
@ -450,9 +450,9 @@ perm_induction_on p'
|
||||||
(r₁ : ∀{a s₁ s₂}, t₁ ≈ a|s₁ → t₂≈a|s₂ → s₁ ~ s₂)
|
(r₁ : ∀{a s₁ s₂}, t₁ ≈ a|s₁ → t₂≈a|s₂ → s₁ ~ s₂)
|
||||||
(r₂ : ∀{a s₁ s₂}, t₂ ≈ a|s₁ → t₃≈a|s₂ → s₁ ~ s₂)
|
(r₂ : ∀{a s₁ s₂}, t₂ ≈ a|s₁ → t₃≈a|s₂ → s₁ ~ s₂)
|
||||||
a s₁ s₂ e₁ e₂,
|
a s₁ s₂ e₁ e₂,
|
||||||
have aint₁ : a ∈ t₁, from mem_head_of_qeq e₁,
|
have a ∈ t₁, from mem_head_of_qeq e₁,
|
||||||
have aint₂ : a ∈ t₂, from mem_perm p₁ aint₁,
|
have a ∈ t₂, from mem_perm p₁ this,
|
||||||
obtain (t₂' : list A) (e₂' : t₂≈a|t₂'), from qeq_of_mem aint₂,
|
obtain (t₂' : list A) (e₂' : t₂≈a|t₂'), from qeq_of_mem this,
|
||||||
calc s₁ ~ t₂' : r₁ e₁ e₂'
|
calc s₁ ~ t₂' : r₁ e₁ e₂'
|
||||||
... ~ s₂ : r₂ e₂' e₂)
|
... ~ s₂ : r₂ e₂' e₂)
|
||||||
|
|
||||||
|
@ -688,11 +688,9 @@ theorem perm_ext : ∀ {l₁ l₂ : list A}, nodup l₁ → nodup l₂ → (∀a
|
||||||
| [] (a₂::t₂) d₁ d₂ e := absurd (iff.mpr (e a₂) !mem_cons) (not_mem_nil a₂)
|
| [] (a₂::t₂) d₁ d₂ e := absurd (iff.mpr (e a₂) !mem_cons) (not_mem_nil a₂)
|
||||||
| (a₁::t₁) [] d₁ d₂ e := absurd (iff.mp (e a₁) !mem_cons) (not_mem_nil a₁)
|
| (a₁::t₁) [] d₁ d₂ e := absurd (iff.mp (e a₁) !mem_cons) (not_mem_nil a₁)
|
||||||
| (a₁::t₁) (a₂::t₂) d₁ d₂ e :=
|
| (a₁::t₁) (a₂::t₂) d₁ d₂ e :=
|
||||||
have a₁inl₂ : a₁ ∈ a₂::t₂, from iff.mp (e a₁) !mem_cons,
|
have a₁ ∈ a₂::t₂, from iff.mp (e a₁) !mem_cons,
|
||||||
have dt₁ : nodup t₁, from nodup_of_nodup_cons d₁,
|
have ∃s₁ s₂, a₂::t₂ = s₁++(a₁::s₂), from mem_split this,
|
||||||
have na₁int₁ : a₁ ∉ t₁, from not_mem_of_nodup_cons d₁,
|
obtain (s₁ s₂ : list A) (t₂_eq : a₂::t₂ = s₁++(a₁::s₂)), from this,
|
||||||
have ex : ∃s₁ s₂, a₂::t₂ = s₁++(a₁::s₂), from mem_split a₁inl₂,
|
|
||||||
obtain (s₁ s₂ : list A) (t₂_eq : a₂::t₂ = s₁++(a₁::s₂)), from ex,
|
|
||||||
have dt₂' : nodup (a₁::(s₁++s₂)), from nodup_head (by rewrite [t₂_eq at d₂]; exact d₂),
|
have dt₂' : nodup (a₁::(s₁++s₂)), from nodup_head (by rewrite [t₂_eq at d₂]; exact d₂),
|
||||||
have na₁s₁s₂ : a₁ ∉ s₁++s₂, from not_mem_of_nodup_cons dt₂',
|
have na₁s₁s₂ : a₁ ∉ s₁++s₂, from not_mem_of_nodup_cons dt₂',
|
||||||
have na₁s₁ : a₁ ∉ s₁, from not_mem_of_not_mem_append_left na₁s₁s₂,
|
have na₁s₁ : a₁ ∉ s₁, from not_mem_of_not_mem_append_left na₁s₁s₂,
|
||||||
|
@ -706,22 +704,25 @@ theorem perm_ext : ∀ {l₁ l₂ : list A}, nodup l₁ → nodup l₂ → (∀a
|
||||||
or.elim (mem_or_mem_of_mem_append ains₁a₁s₂)
|
or.elim (mem_or_mem_of_mem_append ains₁a₁s₂)
|
||||||
(λ ains₁ : a ∈ s₁, mem_append_left s₂ ains₁)
|
(λ ains₁ : a ∈ s₁, mem_append_left s₂ ains₁)
|
||||||
(λ aina₁s₂ : a ∈ a₁::s₂, or.elim (eq_or_mem_of_mem_cons aina₁s₂)
|
(λ aina₁s₂ : a ∈ a₁::s₂, or.elim (eq_or_mem_of_mem_cons aina₁s₂)
|
||||||
(λ aeqa₁ : a = a₁, absurd (aeqa₁ ▸ aint₁) na₁int₁)
|
(λ aeqa₁ : a = a₁,
|
||||||
|
have a₁ ∉ t₁, from not_mem_of_nodup_cons d₁,
|
||||||
|
absurd (aeqa₁ ▸ aint₁) this)
|
||||||
(λ ains₂ : a ∈ s₂, mem_append_right s₁ ains₂)))
|
(λ ains₂ : a ∈ s₂, mem_append_right s₁ ains₂)))
|
||||||
(λ ains₁s₂ : a ∈ s₁ ++ s₂, or.elim (mem_or_mem_of_mem_append ains₁s₂)
|
(λ ains₁s₂ : a ∈ s₁ ++ s₂, or.elim (mem_or_mem_of_mem_append ains₁s₂)
|
||||||
(λ ains₁ : a ∈ s₁,
|
(λ ains₁ : a ∈ s₁,
|
||||||
have aina₂t₂ : a ∈ a₂::t₂, from by rewrite [t₂_eq]; exact (mem_append_left _ ains₁),
|
have a ∈ a₂::t₂, from by rewrite [t₂_eq]; exact (mem_append_left _ ains₁),
|
||||||
have aina₁t₁ : a ∈ a₁::t₁, from iff.mpr (e a) aina₂t₂,
|
have a ∈ a₁::t₁, from iff.mpr (e a) this,
|
||||||
or.elim (eq_or_mem_of_mem_cons aina₁t₁)
|
or.elim (eq_or_mem_of_mem_cons this)
|
||||||
(λ aeqa₁ : a = a₁, absurd (aeqa₁ ▸ ains₁) na₁s₁)
|
(λ aeqa₁ : a = a₁, absurd (aeqa₁ ▸ ains₁) na₁s₁)
|
||||||
(λ aint₁ : a ∈ t₁, aint₁))
|
(λ aint₁ : a ∈ t₁, aint₁))
|
||||||
(λ ains₂ : a ∈ s₂,
|
(λ ains₂ : a ∈ s₂,
|
||||||
have aina₂t₂ : a ∈ a₂::t₂, from by rewrite [t₂_eq]; exact (mem_append_right _ (mem_cons_of_mem _ ains₂)),
|
have a ∈ a₂::t₂, from by rewrite [t₂_eq]; exact (mem_append_right _ (mem_cons_of_mem _ ains₂)),
|
||||||
have aina₁t₁ : a ∈ a₁::t₁, from iff.mpr (e a) aina₂t₂,
|
have a ∈ a₁::t₁, from iff.mpr (e a) this,
|
||||||
or.elim (eq_or_mem_of_mem_cons aina₁t₁)
|
or.elim (eq_or_mem_of_mem_cons this)
|
||||||
(λ aeqa₁ : a = a₁, absurd (aeqa₁ ▸ ains₂) na₁s₂)
|
(λ aeqa₁ : a = a₁, absurd (aeqa₁ ▸ ains₂) na₁s₂)
|
||||||
(λ aint₁ : a ∈ t₁, aint₁))),
|
(λ aint₁ : a ∈ t₁, aint₁))),
|
||||||
calc a₁::t₁ ~ a₁::(s₁++s₂) : skip a₁ (perm_ext dt₁ ds₁s₂ eqv)
|
have nodup t₁, from nodup_of_nodup_cons d₁,
|
||||||
|
calc a₁::t₁ ~ a₁::(s₁++s₂) : skip a₁ (perm_ext this ds₁s₂ eqv)
|
||||||
... ~ s₁++(a₁::s₂) : !perm_middle
|
... ~ s₁++(a₁::s₂) : !perm_middle
|
||||||
... = a₂::t₂ : by rewrite t₂_eq
|
... = a₂::t₂ : by rewrite t₂_eq
|
||||||
end ext
|
end ext
|
||||||
|
|
|
@ -157,13 +157,13 @@ nat.induction_on n
|
||||||
(take H : 0 + m = 0 + k,
|
(take H : 0 + m = 0 + k,
|
||||||
!zero_add⁻¹ ⬝ H ⬝ !zero_add)
|
!zero_add⁻¹ ⬝ H ⬝ !zero_add)
|
||||||
(take (n : ℕ) (IH : n + m = n + k → m = k) (H : succ n + m = succ n + k),
|
(take (n : ℕ) (IH : n + m = n + k → m = k) (H : succ n + m = succ n + k),
|
||||||
have H2 : succ (n + m) = succ (n + k),
|
have succ (n + m) = succ (n + k),
|
||||||
from calc
|
from calc
|
||||||
succ (n + m) = succ n + m : succ_add
|
succ (n + m) = succ n + m : succ_add
|
||||||
... = succ n + k : H
|
... = succ n + k : H
|
||||||
... = succ (n + k) : succ_add,
|
... = succ (n + k) : succ_add,
|
||||||
have H3 : n + m = n + k, from succ.inj H2,
|
have n + m = n + k, from succ.inj this,
|
||||||
IH H3)
|
IH this)
|
||||||
|
|
||||||
theorem add.cancel_right {n m k : ℕ} (H : n + m = k + m) : n = k :=
|
theorem add.cancel_right {n m k : ℕ} (H : n + m = k + m) : n = k :=
|
||||||
have H2 : m + n = m + k, from !add.comm ⬝ H ⬝ !add.comm,
|
have H2 : m + n = m + k, from !add.comm ⬝ H ⬝ !add.comm,
|
||||||
|
|
|
@ -123,10 +123,10 @@ namespace nat
|
||||||
| 0 h := absurd (ball_zero P) h
|
| 0 h := absurd (ball_zero P) h
|
||||||
| (succ n) h := decidable.by_cases
|
| (succ n) h := decidable.by_cases
|
||||||
(λ hp : P n,
|
(λ hp : P n,
|
||||||
have h₁ : ¬ ball n P, from
|
have ¬ ball n P, from
|
||||||
assume b : ball n P, absurd (ball_succ_of_ball b hp) h,
|
assume b : ball n P, absurd (ball_succ_of_ball b hp) h,
|
||||||
have h₂ : {i | i < n ∧ ¬ P i}, from bsub_not_of_not_ball h₁,
|
have {i | i < n ∧ ¬ P i}, from bsub_not_of_not_ball this,
|
||||||
bsub_succ h₂)
|
bsub_succ this)
|
||||||
(λ hn : ¬ P n, bsub_succ_of_pred hn)
|
(λ hn : ¬ P n, bsub_succ_of_pred hn)
|
||||||
|
|
||||||
theorem bex_not_of_not_ball {n : nat} (H : ¬ ball n P) : bex n (λ n, ¬ P n) :=
|
theorem bex_not_of_not_ball {n : nat} (H : ¬ ball n P) : bex n (λ n, ¬ P n) :=
|
||||||
|
@ -137,8 +137,8 @@ namespace nat
|
||||||
| (succ n) h := by_cases
|
| (succ n) h := by_cases
|
||||||
(λ hp : P n, absurd (bex_succ_of_pred hp) h)
|
(λ hp : P n, absurd (bex_succ_of_pred hp) h)
|
||||||
(λ hn : ¬ P n,
|
(λ hn : ¬ P n,
|
||||||
have h₁ : ¬ bex n P, from
|
have ¬ bex n P, from
|
||||||
assume b : bex n P, absurd (bex_succ b) h,
|
assume b : bex n P, absurd (bex_succ b) h,
|
||||||
have h₂ : ball n (λ n, ¬ P n), from ball_not_of_not_bex h₁,
|
have ball n (λ n, ¬ P n), from ball_not_of_not_bex this,
|
||||||
ball_succ_of_ball h₂ hn)
|
ball_succ_of_ball this hn)
|
||||||
end nat
|
end nat
|
||||||
|
|
|
@ -42,12 +42,12 @@ acc.intro x (λ (y : nat) (l : y ≺ x),
|
||||||
private lemma acc_of_acc_succ {x : nat} : acc gtb (succ x) → acc gtb x :=
|
private lemma acc_of_acc_succ {x : nat} : acc gtb (succ x) → acc gtb x :=
|
||||||
assume h,
|
assume h,
|
||||||
acc.intro x (λ (y : nat) (l : y ≺ x),
|
acc.intro x (λ (y : nat) (l : y ≺ x),
|
||||||
have ygtx : x < y, from and.elim_left l,
|
|
||||||
by_cases
|
by_cases
|
||||||
(λ yeqx : y = succ x, by substvars; assumption)
|
(assume yeqx : y = succ x, by substvars; assumption)
|
||||||
(λ ynex : y ≠ succ x,
|
(assume ynex : y ≠ succ x,
|
||||||
have ygtsx : succ x < y, from lt_of_le_and_ne ygtx (ne.symm ynex),
|
have x < y, from and.elim_left l,
|
||||||
acc.inv h (and.intro ygtsx (and.elim_right l))))
|
have succ x < y, from lt_of_le_and_ne this (ne.symm ynex),
|
||||||
|
acc.inv h (and.intro this (and.elim_right l))))
|
||||||
|
|
||||||
private lemma acc_of_px_of_gt {x y : nat} : p x → y > x → acc gtb y :=
|
private lemma acc_of_px_of_gt {x y : nat} : p x → y > x → acc gtb y :=
|
||||||
assume px ygtx,
|
assume px ygtx,
|
||||||
|
|
|
@ -135,14 +135,14 @@ nat.case_strong_induction_on x
|
||||||
show succ x mod y < y, from
|
show succ x mod y < y, from
|
||||||
by_cases -- (succ x < y)
|
by_cases -- (succ x < y)
|
||||||
(assume H1 : succ x < y,
|
(assume H1 : succ x < y,
|
||||||
have H2 : succ x mod y = succ x, from mod_eq_of_lt H1,
|
have succ x mod y = succ x, from mod_eq_of_lt H1,
|
||||||
show succ x mod y < y, from H2⁻¹ ▸ H1)
|
show succ x mod y < y, from this⁻¹ ▸ H1)
|
||||||
(assume H1 : ¬ succ x < y,
|
(assume H1 : ¬ succ x < y,
|
||||||
have H2 : y ≤ succ x, from le_of_not_gt H1,
|
have y ≤ succ x, from le_of_not_gt H1,
|
||||||
have H3 : succ x mod y = (succ x - y) mod y, from mod_eq_sub_mod H H2,
|
have h : succ x mod y = (succ x - y) mod y, from mod_eq_sub_mod H this,
|
||||||
have H4 : succ x - y < succ x, from sub_lt !succ_pos H,
|
have succ x - y < succ x, from sub_lt !succ_pos H,
|
||||||
have H5 : succ x - y ≤ x, from le_of_lt_succ H4,
|
have succ x - y ≤ x, from le_of_lt_succ this,
|
||||||
show succ x mod y < y, from H3⁻¹ ▸ IH _ H5))
|
show succ x mod y < y, from h⁻¹ ▸ IH _ this))
|
||||||
|
|
||||||
theorem mod_one (n : ℕ) : n mod 1 = 0 :=
|
theorem mod_one (n : ℕ) : n mod 1 = 0 :=
|
||||||
have H1 : n mod 1 < 1, from !mod_lt !succ_pos,
|
have H1 : n mod 1 < 1, from !mod_lt !succ_pos,
|
||||||
|
@ -368,10 +368,10 @@ by_cases_zero_pos n
|
||||||
assume H2 : n ∣ m,
|
assume H2 : n ∣ m,
|
||||||
obtain k (Hk : n = m * k), from exists_eq_mul_right_of_dvd H1,
|
obtain k (Hk : n = m * k), from exists_eq_mul_right_of_dvd H1,
|
||||||
obtain l (Hl : m = n * l), from exists_eq_mul_right_of_dvd H2,
|
obtain l (Hl : m = n * l), from exists_eq_mul_right_of_dvd H2,
|
||||||
have H3 : n * (l * k) = n, from !mul.assoc ▸ Hl ▸ Hk⁻¹,
|
have n * (l * k) = n, from !mul.assoc ▸ Hl ▸ Hk⁻¹,
|
||||||
have H4 : l * k = 1, from eq_one_of_mul_eq_self_right Hpos H3,
|
have l * k = 1, from eq_one_of_mul_eq_self_right Hpos this,
|
||||||
have H5 : k = 1, from eq_one_of_mul_eq_one_left H4,
|
have k = 1, from eq_one_of_mul_eq_one_left this,
|
||||||
show m = n, from (mul_one m)⁻¹ ⬝ (H5 ▸ Hk⁻¹))
|
show m = n, from (mul_one m)⁻¹ ⬝ (this ▸ Hk⁻¹))
|
||||||
|
|
||||||
theorem mul_div_assoc (m : ℕ) {n k : ℕ} (H : k ∣ n) : m * n div k = m * (n div k) :=
|
theorem mul_div_assoc (m : ℕ) {n k : ℕ} (H : k ∣ n) : m * n div k = m * (n div k) :=
|
||||||
or.elim (eq_zero_or_pos k)
|
or.elim (eq_zero_or_pos k)
|
||||||
|
|
|
@ -392,11 +392,11 @@ have H4 : k * m < k * l, from mul_lt_mul_of_pos_left H2 (lt_of_le_of_lt !zero_le
|
||||||
lt_of_le_of_lt H3 H4
|
lt_of_le_of_lt H3 H4
|
||||||
|
|
||||||
theorem eq_of_mul_eq_mul_left {m k n : ℕ} (Hn : n > 0) (H : n * m = n * k) : m = k :=
|
theorem eq_of_mul_eq_mul_left {m k n : ℕ} (Hn : n > 0) (H : n * m = n * k) : m = k :=
|
||||||
have H2 : n * m ≤ n * k, by rewrite H,
|
have n * m ≤ n * k, by rewrite H,
|
||||||
have H3 : n * k ≤ n * m, by rewrite H,
|
have h : m ≤ k, from le_of_mul_le_mul_left this Hn,
|
||||||
have H4 : m ≤ k, from le_of_mul_le_mul_left H2 Hn,
|
have n * k ≤ n * m, by rewrite H,
|
||||||
have H5 : k ≤ m, from le_of_mul_le_mul_left H3 Hn,
|
have k ≤ m, from le_of_mul_le_mul_left this Hn,
|
||||||
le.antisymm H4 H5
|
le.antisymm h this
|
||||||
|
|
||||||
theorem eq_of_mul_eq_mul_right {n m k : ℕ} (Hm : m > 0) (H : n * m = k * m) : n = k :=
|
theorem eq_of_mul_eq_mul_right {n m k : ℕ} (Hm : m > 0) (H : n * m = k * m) : n = k :=
|
||||||
eq_of_mul_eq_mul_left Hm (!mul.comm ▸ !mul.comm ▸ H)
|
eq_of_mul_eq_mul_left Hm (!mul.comm ▸ !mul.comm ▸ H)
|
||||||
|
@ -410,15 +410,15 @@ eq_zero_or_eq_of_mul_eq_mul_left (!mul.comm ▸ !mul.comm ▸ H)
|
||||||
|
|
||||||
theorem eq_one_of_mul_eq_one_right {n m : ℕ} (H : n * m = 1) : n = 1 :=
|
theorem eq_one_of_mul_eq_one_right {n m : ℕ} (H : n * m = 1) : n = 1 :=
|
||||||
have H2 : n * m > 0, by rewrite H; apply succ_pos,
|
have H2 : n * m > 0, by rewrite H; apply succ_pos,
|
||||||
have H3 : n > 0, from pos_of_mul_pos_right H2,
|
|
||||||
have H4 : m > 0, from pos_of_mul_pos_left H2,
|
|
||||||
or.elim (le_or_gt n 1)
|
or.elim (le_or_gt n 1)
|
||||||
(assume H5 : n ≤ 1,
|
(assume H5 : n ≤ 1,
|
||||||
show n = 1, from le.antisymm H5 (succ_le_of_lt H3))
|
have n > 0, from pos_of_mul_pos_right H2,
|
||||||
|
show n = 1, from le.antisymm H5 (succ_le_of_lt this))
|
||||||
(assume H5 : n > 1,
|
(assume H5 : n > 1,
|
||||||
have H6 : n * m ≥ 2 * 1, from mul_le_mul (succ_le_of_lt H5) (succ_le_of_lt H4),
|
have m > 0, from pos_of_mul_pos_left H2,
|
||||||
have H7 : 1 ≥ 2, from !mul_one ▸ H ▸ H6,
|
have n * m ≥ 2 * 1, from mul_le_mul (succ_le_of_lt H5) (succ_le_of_lt this),
|
||||||
absurd !lt_succ_self (not_lt_of_ge H7))
|
have 1 ≥ 2, from !mul_one ▸ H ▸ this,
|
||||||
|
absurd !lt_succ_self (not_lt_of_ge this))
|
||||||
|
|
||||||
theorem eq_one_of_mul_eq_one_left {n m : ℕ} (H : n * m = 1) : m = 1 :=
|
theorem eq_one_of_mul_eq_one_left {n m : ℕ} (H : n * m = 1) : m = 1 :=
|
||||||
eq_one_of_mul_eq_one_right (!mul.comm ▸ H)
|
eq_one_of_mul_eq_one_right (!mul.comm ▸ H)
|
||||||
|
|
|
@ -64,23 +64,23 @@ assume h d, obtain h₁ h₂, from h, h₂ m d
|
||||||
|
|
||||||
lemma gt_one_of_pos_of_prime_dvd {i p : nat} : prime p → 0 < i → i mod p = 0 → 1 < i :=
|
lemma gt_one_of_pos_of_prime_dvd {i p : nat} : prime p → 0 < i → i mod p = 0 → 1 < i :=
|
||||||
assume ipp pos h,
|
assume ipp pos h,
|
||||||
have h₁ : p ∣ i, from dvd_of_mod_eq_zero h,
|
have h₁ : p ≥ 2, from ge_two_of_prime ipp,
|
||||||
have h₂ : p ≥ 2, from ge_two_of_prime ipp,
|
have p ∣ i, from dvd_of_mod_eq_zero h,
|
||||||
have h₃ : p ≤ i, from le_of_dvd pos h₁,
|
have p ≤ i, from le_of_dvd pos this,
|
||||||
lt_of_succ_le (le.trans h₂ h₃)
|
lt_of_succ_le (le.trans h₁ this)
|
||||||
|
|
||||||
definition sub_dvd_of_not_prime {n : nat} : n ≥ 2 → ¬ prime n → {m | m ∣ n ∧ m ≠ 1 ∧ m ≠ n} :=
|
definition sub_dvd_of_not_prime {n : nat} : n ≥ 2 → ¬ prime n → {m | m ∣ n ∧ m ≠ 1 ∧ m ≠ n} :=
|
||||||
assume h₁ h₂,
|
assume h₁ h₂,
|
||||||
have h₃ : ¬ prime_ext n, from iff.mpr (not_iff_not_of_iff !prime_ext_iff_prime) h₂,
|
have ¬ prime_ext n, from iff.mpr (not_iff_not_of_iff !prime_ext_iff_prime) h₂,
|
||||||
have h₄ : ¬ n ≥ 2 ∨ ¬ (∀ m, m ≤ n → m ∣ n → m = 1 ∨ m = n), from iff.mp !not_and_iff_not_or_not h₃,
|
have ¬ n ≥ 2 ∨ ¬ (∀ m, m ≤ n → m ∣ n → m = 1 ∨ m = n), from iff.mp !not_and_iff_not_or_not this,
|
||||||
have h₅ : ¬ (∀ m, m ≤ n → m ∣ n → m = 1 ∨ m = n), from or_resolve_right h₄ (not_not_intro h₁),
|
have ¬ (∀ m, m ≤ n → m ∣ n → m = 1 ∨ m = n), from or_resolve_right this (not_not_intro h₁),
|
||||||
have h₆ : ¬ (∀ m, m < succ n → m ∣ n → m = 1 ∨ m = n), from
|
have ¬ (∀ m, m < succ n → m ∣ n → m = 1 ∨ m = n), from
|
||||||
assume h, absurd (λ m hl hd, h m (lt_succ_of_le hl) hd) h₅,
|
assume h, absurd (λ m hl hd, h m (lt_succ_of_le hl) hd) this,
|
||||||
have h₇ : {m | m < succ n ∧ ¬(m ∣ n → m = 1 ∨ m = n)}, from bsub_not_of_not_ball h₆,
|
have {m | m < succ n ∧ ¬(m ∣ n → m = 1 ∨ m = n)}, from bsub_not_of_not_ball this,
|
||||||
obtain m hlt (h₈ : ¬(m ∣ n → m = 1 ∨ m = n)), from h₇,
|
obtain m hlt (h₃ : ¬(m ∣ n → m = 1 ∨ m = n)), from this,
|
||||||
obtain (h₈ : m ∣ n) (h₉ : ¬ (m = 1 ∨ m = n)), from iff.mp !not_implies_iff_and_not h₈,
|
obtain (h₄ : m ∣ n) (h₅ : ¬ (m = 1 ∨ m = n)), from iff.mp !not_implies_iff_and_not h₃,
|
||||||
have h₁₀ : ¬ m = 1 ∧ ¬ m = n, from iff.mp !not_or_iff_not_and_not h₉,
|
have ¬ m = 1 ∧ ¬ m = n, from iff.mp !not_or_iff_not_and_not h₅,
|
||||||
subtype.tag m (and.intro h₈ h₁₀)
|
subtype.tag m (and.intro h₄ this)
|
||||||
|
|
||||||
theorem ex_dvd_of_not_prime {n : nat} : n ≥ 2 → ¬ prime n → ∃ m, m ∣ n ∧ m ≠ 1 ∧ m ≠ n :=
|
theorem ex_dvd_of_not_prime {n : nat} : n ≥ 2 → ¬ prime n → ∃ m, m ∣ n ∧ m ≠ 1 ∧ m ≠ n :=
|
||||||
assume h₁ h₂, ex_of_sub (sub_dvd_of_not_prime h₁ h₂)
|
assume h₁ h₂, ex_of_sub (sub_dvd_of_not_prime h₁ h₂)
|
||||||
|
@ -121,20 +121,20 @@ open eq.ops
|
||||||
|
|
||||||
definition infinite_primes (n : nat) : {p | p ≥ n ∧ prime p} :=
|
definition infinite_primes (n : nat) : {p | p ≥ n ∧ prime p} :=
|
||||||
let m := fact (n + 1) in
|
let m := fact (n + 1) in
|
||||||
have m_ge_1 : m ≥ 1, from le_of_lt_succ (succ_lt_succ (fact_pos _)),
|
have m ≥ 1, from le_of_lt_succ (succ_lt_succ (fact_pos _)),
|
||||||
have m1_ge_2 : m + 1 ≥ 2, from succ_le_succ m_ge_1,
|
have m + 1 ≥ 2, from succ_le_succ this,
|
||||||
obtain p (prime_p : prime p) (p_dvd_m1 : p ∣ m + 1), from sub_prime_and_dvd m1_ge_2,
|
obtain p (prime_p : prime p) (p_dvd_m1 : p ∣ m + 1), from sub_prime_and_dvd this,
|
||||||
have p_ge_2 : p ≥ 2, from ge_two_of_prime prime_p,
|
have p_ge_2 : p ≥ 2, from ge_two_of_prime prime_p,
|
||||||
have p_gt_0 : p > 0, from lt_of_succ_lt (lt_of_succ_le p_ge_2),
|
have p_gt_0 : p > 0, from lt_of_succ_lt (lt_of_succ_le p_ge_2),
|
||||||
have p_ge_n : p ≥ n, from by_contradiction
|
have p ≥ n, from by_contradiction
|
||||||
(assume h₁ : ¬ p ≥ n,
|
(assume h₁ : ¬ p ≥ n,
|
||||||
have h₂ : p < n, from lt_of_not_ge h₁,
|
have p < n, from lt_of_not_ge h₁,
|
||||||
have h₃ : p ≤ n + 1, from le_of_lt (lt.step h₂),
|
have p ≤ n + 1, from le_of_lt (lt.step this),
|
||||||
have h₄ : p ∣ m, from dvd_fact p_gt_0 h₃,
|
have p ∣ m, from dvd_fact p_gt_0 this,
|
||||||
have h₅ : p ∣ 1, from dvd_of_dvd_add_right (!add.comm ▸ p_dvd_m1) h₄,
|
have p ∣ 1, from dvd_of_dvd_add_right (!add.comm ▸ p_dvd_m1) this,
|
||||||
have h₆ : p ≤ 1, from le_of_dvd zero_lt_one h₅,
|
have p ≤ 1, from le_of_dvd zero_lt_one this,
|
||||||
absurd (le.trans p_ge_2 h₆) dec_trivial),
|
absurd (le.trans p_ge_2 this) dec_trivial),
|
||||||
subtype.tag p (and.intro p_ge_n prime_p)
|
subtype.tag p (and.intro this prime_p)
|
||||||
|
|
||||||
lemma ex_infinite_primes (n : nat) : ∃ p, p ≥ n ∧ prime p :=
|
lemma ex_infinite_primes (n : nat) : ∃ p, p ≥ n ∧ prime p :=
|
||||||
ex_of_sub (infinite_primes n)
|
ex_of_sub (infinite_primes n)
|
||||||
|
@ -158,10 +158,10 @@ by_contradiction (assume nc : ¬ coprime p n, npdvdn (dvd_of_prime_of_not_coprim
|
||||||
|
|
||||||
theorem not_dvd_of_prime_of_coprime {p n : ℕ} (primep : prime p) (cop : coprime p n) : ¬ p ∣ n :=
|
theorem not_dvd_of_prime_of_coprime {p n : ℕ} (primep : prime p) (cop : coprime p n) : ¬ p ∣ n :=
|
||||||
assume pdvdn : p ∣ n,
|
assume pdvdn : p ∣ n,
|
||||||
have H1 : p ∣ gcd p n, from dvd_gcd !dvd.refl pdvdn,
|
have p ∣ gcd p n, from dvd_gcd !dvd.refl pdvdn,
|
||||||
have H2 : p ≤ gcd p n, from le_of_dvd (!gcd_pos_of_pos_left (pos_of_prime primep)) H1,
|
have p ≤ gcd p n, from le_of_dvd (!gcd_pos_of_pos_left (pos_of_prime primep)) this,
|
||||||
have H3 : 2 ≤ 1, from le.trans (ge_two_of_prime primep) (cop ▸ H2),
|
have 2 ≤ 1, from le.trans (ge_two_of_prime primep) (cop ▸ this),
|
||||||
show false, from !not_succ_le_self H3
|
show false, from !not_succ_le_self this
|
||||||
|
|
||||||
theorem not_coprime_of_prime_dvd {p n : ℕ} (primep : prime p) (pdvdn : p ∣ n) : ¬ coprime p n :=
|
theorem not_coprime_of_prime_dvd {p n : ℕ} (primep : prime p) (pdvdn : p ∣ n) : ¬ coprime p n :=
|
||||||
assume cop, not_dvd_of_prime_of_coprime primep cop pdvdn
|
assume cop, not_dvd_of_prime_of_coprime primep cop pdvdn
|
||||||
|
@ -169,8 +169,8 @@ assume cop, not_dvd_of_prime_of_coprime primep cop pdvdn
|
||||||
theorem dvd_of_prime_of_dvd_mul_left {p m n : ℕ} (primep : prime p)
|
theorem dvd_of_prime_of_dvd_mul_left {p m n : ℕ} (primep : prime p)
|
||||||
(Hmn : p ∣ m * n) (Hm : ¬ p ∣ m) :
|
(Hmn : p ∣ m * n) (Hm : ¬ p ∣ m) :
|
||||||
p ∣ n :=
|
p ∣ n :=
|
||||||
have copm : coprime p m, from coprime_of_prime_of_not_dvd primep Hm,
|
have coprime p m, from coprime_of_prime_of_not_dvd primep Hm,
|
||||||
show p ∣ n, from dvd_of_coprime_of_dvd_mul_left copm Hmn
|
show p ∣ n, from dvd_of_coprime_of_dvd_mul_left this Hmn
|
||||||
|
|
||||||
theorem dvd_of_prime_of_dvd_mul_right {p m n : ℕ} (primep : prime p)
|
theorem dvd_of_prime_of_dvd_mul_right {p m n : ℕ} (primep : prime p)
|
||||||
(Hmn : p ∣ m * n) (Hn : ¬ p ∣ n) :
|
(Hmn : p ∣ m * n) (Hn : ¬ p ∣ n) :
|
||||||
|
@ -188,12 +188,12 @@ lemma dvd_or_dvd_of_prime_of_dvd_mul {p m n : nat} : prime p → p ∣ m * n →
|
||||||
|
|
||||||
lemma dvd_of_prime_of_dvd_pow {p m : nat} : ∀ {n}, prime p → p ∣ m^n → p ∣ m
|
lemma dvd_of_prime_of_dvd_pow {p m : nat} : ∀ {n}, prime p → p ∣ m^n → p ∣ m
|
||||||
| 0 hp hd :=
|
| 0 hp hd :=
|
||||||
assert peq1 : p = 1, from eq_one_of_dvd_one hd,
|
assert p = 1, from eq_one_of_dvd_one hd,
|
||||||
have h₂ : 1 ≥ 2, by rewrite -peq1; apply ge_two_of_prime hp,
|
have 1 ≥ 2, by rewrite -this; apply ge_two_of_prime hp,
|
||||||
absurd h₂ dec_trivial
|
absurd this dec_trivial
|
||||||
| (succ n) hp hd :=
|
| (succ n) hp hd :=
|
||||||
have hd₁ : p ∣ (m^n)*m, by rewrite [pow_succ at hd]; exact hd,
|
have p ∣ (m^n)*m, by rewrite [pow_succ at hd]; exact hd,
|
||||||
or.elim (dvd_or_dvd_of_prime_of_dvd_mul hp hd₁)
|
or.elim (dvd_or_dvd_of_prime_of_dvd_mul hp this)
|
||||||
(λ h : p ∣ m^n, dvd_of_prime_of_dvd_pow hp h)
|
(λ h : p ∣ m^n, dvd_of_prime_of_dvd_pow hp h)
|
||||||
(λ h : p ∣ m, h)
|
(λ h : p ∣ m, h)
|
||||||
|
|
||||||
|
@ -202,13 +202,13 @@ lemma coprime_pow_of_prime_of_not_dvd {p m a : nat} : prime p → ¬ p ∣ a →
|
||||||
|
|
||||||
lemma coprime_primes {p q : nat} : prime p → prime q → p ≠ q → coprime p q :=
|
lemma coprime_primes {p q : nat} : prime p → prime q → p ≠ q → coprime p q :=
|
||||||
λ hp hq hn,
|
λ hp hq hn,
|
||||||
assert d₁ : gcd p q ∣ p, from !gcd_dvd_left,
|
assert gcd p q ∣ p, from !gcd_dvd_left,
|
||||||
assert d₂ : gcd p q ∣ q, from !gcd_dvd_right,
|
or.elim (eq_one_or_eq_self_of_prime_of_dvd hp this)
|
||||||
or.elim (eq_one_or_eq_self_of_prime_of_dvd hp d₁)
|
|
||||||
(λ h : gcd p q = 1, h)
|
(λ h : gcd p q = 1, h)
|
||||||
(λ h : gcd p q = p,
|
(λ h : gcd p q = p,
|
||||||
have d₃ : p ∣ q, by rewrite -h; exact d₂,
|
assert gcd p q ∣ q, from !gcd_dvd_right,
|
||||||
or.elim (eq_one_or_eq_self_of_prime_of_dvd hq d₃)
|
have p ∣ q, by rewrite -h; exact this,
|
||||||
|
or.elim (eq_one_or_eq_self_of_prime_of_dvd hq this)
|
||||||
(λ h₁ : p = 1, by subst p; exact absurd hp not_prime_one)
|
(λ h₁ : p = 1, by subst p; exact absurd hp not_prime_one)
|
||||||
(λ he : p = q, by contradiction))
|
(λ he : p = q, by contradiction))
|
||||||
|
|
||||||
|
|
|
@ -16,7 +16,7 @@
|
||||||
"alias" "help" "environment" "options" "precedence" "reserve"
|
"alias" "help" "environment" "options" "precedence" "reserve"
|
||||||
"match" "infix" "infixl" "infixr" "notation" "postfix" "prefix"
|
"match" "infix" "infixl" "infixr" "notation" "postfix" "prefix"
|
||||||
"tactic_infix" "tactic_infixl" "tactic_infixr" "tactic_notation" "tactic_postfix" "tactic_prefix"
|
"tactic_infix" "tactic_infixl" "tactic_infixr" "tactic_notation" "tactic_postfix" "tactic_prefix"
|
||||||
"eval" "check" "end" "reveal"
|
"eval" "check" "end" "reveal" "this"
|
||||||
"using" "namespace" "section" "fields" "find_decl"
|
"using" "namespace" "section" "fields" "find_decl"
|
||||||
"attribute" "local" "set_option" "extends" "include" "omit" "classes"
|
"attribute" "local" "set_option" "extends" "include" "omit" "classes"
|
||||||
"instances" "coercions" "metaclasses" "raw" "migrate" "replacing")
|
"instances" "coercions" "metaclasses" "raw" "migrate" "replacing")
|
||||||
|
|
|
@ -369,7 +369,7 @@ static expr parse_have_core(parser & p, pos_info const & pos, optional<expr> con
|
||||||
if (p.curr_is_token(get_visible_tk())) {
|
if (p.curr_is_token(get_visible_tk())) {
|
||||||
p.next();
|
p.next();
|
||||||
is_visible = true;
|
is_visible = true;
|
||||||
id = p.mk_fresh_name();
|
id = get_this_tk();
|
||||||
prop = p.parse_expr();
|
prop = p.parse_expr();
|
||||||
} else if (p.curr_is_identifier()) {
|
} else if (p.curr_is_identifier()) {
|
||||||
id = p.get_name_val();
|
id = p.get_name_val();
|
||||||
|
@ -384,11 +384,15 @@ static expr parse_have_core(parser & p, pos_info const & pos, optional<expr> con
|
||||||
prop = p.parse_expr();
|
prop = p.parse_expr();
|
||||||
} else {
|
} else {
|
||||||
expr left = p.id_to_expr(id, id_pos);
|
expr left = p.id_to_expr(id, id_pos);
|
||||||
id = p.mk_fresh_name();
|
id = get_this_tk();
|
||||||
prop = p.parse_led(left);
|
unsigned rbp = 0;
|
||||||
|
while (rbp < p.curr_expr_lbp()) {
|
||||||
|
left = p.parse_led(left);
|
||||||
|
}
|
||||||
|
prop = left;
|
||||||
}
|
}
|
||||||
} else {
|
} else {
|
||||||
id = p.mk_fresh_name();
|
id = get_this_tk();
|
||||||
prop = p.parse_expr();
|
prop = p.parse_expr();
|
||||||
}
|
}
|
||||||
expr proof;
|
expr proof;
|
||||||
|
|
|
@ -141,6 +141,7 @@ static name const * g_fields_tk = nullptr;
|
||||||
static name const * g_trust_tk = nullptr;
|
static name const * g_trust_tk = nullptr;
|
||||||
static name const * g_metaclasses_tk = nullptr;
|
static name const * g_metaclasses_tk = nullptr;
|
||||||
static name const * g_inductive_tk = nullptr;
|
static name const * g_inductive_tk = nullptr;
|
||||||
|
static name const * g_this_tk = nullptr;
|
||||||
void initialize_tokens() {
|
void initialize_tokens() {
|
||||||
g_period_tk = new name{"."};
|
g_period_tk = new name{"."};
|
||||||
g_placeholder_tk = new name{"_"};
|
g_placeholder_tk = new name{"_"};
|
||||||
|
@ -280,6 +281,7 @@ void initialize_tokens() {
|
||||||
g_trust_tk = new name{"trust"};
|
g_trust_tk = new name{"trust"};
|
||||||
g_metaclasses_tk = new name{"metaclasses"};
|
g_metaclasses_tk = new name{"metaclasses"};
|
||||||
g_inductive_tk = new name{"inductive"};
|
g_inductive_tk = new name{"inductive"};
|
||||||
|
g_this_tk = new name{"this"};
|
||||||
}
|
}
|
||||||
void finalize_tokens() {
|
void finalize_tokens() {
|
||||||
delete g_period_tk;
|
delete g_period_tk;
|
||||||
|
@ -420,6 +422,7 @@ void finalize_tokens() {
|
||||||
delete g_trust_tk;
|
delete g_trust_tk;
|
||||||
delete g_metaclasses_tk;
|
delete g_metaclasses_tk;
|
||||||
delete g_inductive_tk;
|
delete g_inductive_tk;
|
||||||
|
delete g_this_tk;
|
||||||
}
|
}
|
||||||
name const & get_period_tk() { return *g_period_tk; }
|
name const & get_period_tk() { return *g_period_tk; }
|
||||||
name const & get_placeholder_tk() { return *g_placeholder_tk; }
|
name const & get_placeholder_tk() { return *g_placeholder_tk; }
|
||||||
|
@ -559,4 +562,5 @@ name const & get_fields_tk() { return *g_fields_tk; }
|
||||||
name const & get_trust_tk() { return *g_trust_tk; }
|
name const & get_trust_tk() { return *g_trust_tk; }
|
||||||
name const & get_metaclasses_tk() { return *g_metaclasses_tk; }
|
name const & get_metaclasses_tk() { return *g_metaclasses_tk; }
|
||||||
name const & get_inductive_tk() { return *g_inductive_tk; }
|
name const & get_inductive_tk() { return *g_inductive_tk; }
|
||||||
|
name const & get_this_tk() { return *g_this_tk; }
|
||||||
}
|
}
|
||||||
|
|
|
@ -143,4 +143,5 @@ name const & get_fields_tk();
|
||||||
name const & get_trust_tk();
|
name const & get_trust_tk();
|
||||||
name const & get_metaclasses_tk();
|
name const & get_metaclasses_tk();
|
||||||
name const & get_inductive_tk();
|
name const & get_inductive_tk();
|
||||||
|
name const & get_this_tk();
|
||||||
}
|
}
|
||||||
|
|
|
@ -136,3 +136,4 @@ fields fields
|
||||||
trust trust
|
trust trust
|
||||||
metaclasses metaclasses
|
metaclasses metaclasses
|
||||||
inductive inductive
|
inductive inductive
|
||||||
|
this this
|
||||||
|
|
Loading…
Reference in a new issue