feat(frontends/lean): use 'this' as the name for anonymous 'have'-expression

This commit is contained in:
Leonardo de Moura 2015-07-18 13:36:05 -05:00
parent 784184a137
commit 92f8eb173b
12 changed files with 117 additions and 106 deletions

View file

@ -238,16 +238,16 @@ definition decidable_perm_aux : ∀ (n : nat) (l₁ l₂ : list A), length l₁
(assume xinl₂ : x ∈ l₂, (assume xinl₂ : x ∈ l₂,
let t₂ : list A := erase x l₂ in let t₂ : list A := erase x l₂ in
have len_t₁ : length t₁ = n, begin injection H₁ with e, exact e end, have len_t₁ : length t₁ = n, begin injection H₁ with e, exact e end,
assert len_t₂_aux : length t₂ = pred (length l₂), from length_erase_of_mem xinl₂, assert length t₂ = pred (length l₂), from length_erase_of_mem xinl₂,
assert len_t₂ : length t₂ = n, by rewrite [len_t₂_aux, H₂], assert length t₂ = n, by rewrite [this, H₂],
match decidable_perm_aux n t₁ t₂ len_t₁ len_t₂ with match decidable_perm_aux n t₁ t₂ len_t₁ this with
| inl p := inl (calc | inl p := inl (calc
x::t₁ ~ x::(erase x l₂) : skip x p x::t₁ ~ x::(erase x l₂) : skip x p
... ~ l₂ : perm_erase xinl₂) ... ~ l₂ : perm_erase xinl₂)
| inr np := inr (λ p : x::t₁ ~ l₂, | inr np := inr (λ p : x::t₁ ~ l₂,
assert p₁ : erase x (x::t₁) ~ erase x l₂, from erase_perm_erase_of_perm x p, assert erase x (x::t₁) ~ erase x l₂, from erase_perm_erase_of_perm x p,
have p₂ : t₁ ~ erase x l₂, by rewrite [erase_cons_head at p₁]; exact p₁, have t₁ ~ erase x l₂, by rewrite [erase_cons_head at this]; exact this,
absurd p₂ np) absurd this np)
end) end)
(assume nxinl₂ : x ∉ l₂, (assume nxinl₂ : x ∉ l₂,
inr (λ p : x::t₁ ~ l₂, absurd (mem_perm p !mem_cons) nxinl₂)) inr (λ p : x::t₁ ~ l₂, absurd (mem_perm p !mem_cons) nxinl₂))
@ -450,9 +450,9 @@ perm_induction_on p'
(r₁ : ∀{a s₁ s₂}, t₁ ≈ a|s₁ → t₂≈a|s₂ → s₁ ~ s₂) (r₁ : ∀{a s₁ s₂}, t₁ ≈ a|s₁ → t₂≈a|s₂ → s₁ ~ s₂)
(r₂ : ∀{a s₁ s₂}, t₂ ≈ a|s₁ → t₃≈a|s₂ → s₁ ~ s₂) (r₂ : ∀{a s₁ s₂}, t₂ ≈ a|s₁ → t₃≈a|s₂ → s₁ ~ s₂)
a s₁ s₂ e₁ e₂, a s₁ s₂ e₁ e₂,
have aint₁ : a ∈ t₁, from mem_head_of_qeq e₁, have a ∈ t₁, from mem_head_of_qeq e₁,
have aint₂ : a ∈ t₂, from mem_perm p₁ aint₁, have a ∈ t₂, from mem_perm p₁ this,
obtain (t₂' : list A) (e₂' : t₂≈a|t₂'), from qeq_of_mem aint₂, obtain (t₂' : list A) (e₂' : t₂≈a|t₂'), from qeq_of_mem this,
calc s₁ ~ t₂' : r₁ e₁ e₂' calc s₁ ~ t₂' : r₁ e₁ e₂'
... ~ s₂ : r₂ e₂' e₂) ... ~ s₂ : r₂ e₂' e₂)
@ -688,11 +688,9 @@ theorem perm_ext : ∀ {l₁ l₂ : list A}, nodup l₁ → nodup l₂ → (∀a
| [] (a₂::t₂) d₁ d₂ e := absurd (iff.mpr (e a₂) !mem_cons) (not_mem_nil a₂) | [] (a₂::t₂) d₁ d₂ e := absurd (iff.mpr (e a₂) !mem_cons) (not_mem_nil a₂)
| (a₁::t₁) [] d₁ d₂ e := absurd (iff.mp (e a₁) !mem_cons) (not_mem_nil a₁) | (a₁::t₁) [] d₁ d₂ e := absurd (iff.mp (e a₁) !mem_cons) (not_mem_nil a₁)
| (a₁::t₁) (a₂::t₂) d₁ d₂ e := | (a₁::t₁) (a₂::t₂) d₁ d₂ e :=
have a₁inl₂ : a₁ ∈ a₂::t₂, from iff.mp (e a₁) !mem_cons, have a₁ ∈ a₂::t₂, from iff.mp (e a₁) !mem_cons,
have dt₁ : nodup t₁, from nodup_of_nodup_cons d₁, have ∃s₁ s₂, a₂::t₂ = s₁++(a₁::s₂), from mem_split this,
have na₁int₁ : a₁ ∉ t₁, from not_mem_of_nodup_cons d₁, obtain (s₁ s₂ : list A) (t₂_eq : a₂::t₂ = s₁++(a₁::s₂)), from this,
have ex : ∃s₁ s₂, a₂::t₂ = s₁++(a₁::s₂), from mem_split a₁inl₂,
obtain (s₁ s₂ : list A) (t₂_eq : a₂::t₂ = s₁++(a₁::s₂)), from ex,
have dt₂' : nodup (a₁::(s₁++s₂)), from nodup_head (by rewrite [t₂_eq at d₂]; exact d₂), have dt₂' : nodup (a₁::(s₁++s₂)), from nodup_head (by rewrite [t₂_eq at d₂]; exact d₂),
have na₁s₁s₂ : a₁ ∉ s₁++s₂, from not_mem_of_nodup_cons dt₂', have na₁s₁s₂ : a₁ ∉ s₁++s₂, from not_mem_of_nodup_cons dt₂',
have na₁s₁ : a₁ ∉ s₁, from not_mem_of_not_mem_append_left na₁s₁s₂, have na₁s₁ : a₁ ∉ s₁, from not_mem_of_not_mem_append_left na₁s₁s₂,
@ -706,22 +704,25 @@ theorem perm_ext : ∀ {l₁ l₂ : list A}, nodup l₁ → nodup l₂ → (∀a
or.elim (mem_or_mem_of_mem_append ains₁a₁s₂) or.elim (mem_or_mem_of_mem_append ains₁a₁s₂)
(λ ains₁ : a ∈ s₁, mem_append_left s₂ ains₁) (λ ains₁ : a ∈ s₁, mem_append_left s₂ ains₁)
(λ aina₁s₂ : a ∈ a₁::s₂, or.elim (eq_or_mem_of_mem_cons aina₁s₂) (λ aina₁s₂ : a ∈ a₁::s₂, or.elim (eq_or_mem_of_mem_cons aina₁s₂)
(λ aeqa₁ : a = a₁, absurd (aeqa₁ ▸ aint₁) na₁int₁) (λ aeqa₁ : a = a₁,
have a₁ ∉ t₁, from not_mem_of_nodup_cons d₁,
absurd (aeqa₁ ▸ aint₁) this)
(λ ains₂ : a ∈ s₂, mem_append_right s₁ ains₂))) (λ ains₂ : a ∈ s₂, mem_append_right s₁ ains₂)))
(λ ains₁s₂ : a ∈ s₁ ++ s₂, or.elim (mem_or_mem_of_mem_append ains₁s₂) (λ ains₁s₂ : a ∈ s₁ ++ s₂, or.elim (mem_or_mem_of_mem_append ains₁s₂)
(λ ains₁ : a ∈ s₁, (λ ains₁ : a ∈ s₁,
have aina₂t₂ : a ∈ a₂::t₂, from by rewrite [t₂_eq]; exact (mem_append_left _ ains₁), have a ∈ a₂::t₂, from by rewrite [t₂_eq]; exact (mem_append_left _ ains₁),
have aina₁t₁ : a ∈ a₁::t₁, from iff.mpr (e a) aina₂t₂, have a ∈ a₁::t₁, from iff.mpr (e a) this,
or.elim (eq_or_mem_of_mem_cons aina₁t₁) or.elim (eq_or_mem_of_mem_cons this)
(λ aeqa₁ : a = a₁, absurd (aeqa₁ ▸ ains₁) na₁s₁) (λ aeqa₁ : a = a₁, absurd (aeqa₁ ▸ ains₁) na₁s₁)
(λ aint₁ : a ∈ t₁, aint₁)) (λ aint₁ : a ∈ t₁, aint₁))
(λ ains₂ : a ∈ s₂, (λ ains₂ : a ∈ s₂,
have aina₂t₂ : a ∈ a₂::t₂, from by rewrite [t₂_eq]; exact (mem_append_right _ (mem_cons_of_mem _ ains₂)), have a ∈ a₂::t₂, from by rewrite [t₂_eq]; exact (mem_append_right _ (mem_cons_of_mem _ ains₂)),
have aina₁t₁ : a ∈ a₁::t₁, from iff.mpr (e a) aina₂t₂, have a ∈ a₁::t₁, from iff.mpr (e a) this,
or.elim (eq_or_mem_of_mem_cons aina₁t₁) or.elim (eq_or_mem_of_mem_cons this)
(λ aeqa₁ : a = a₁, absurd (aeqa₁ ▸ ains₂) na₁s₂) (λ aeqa₁ : a = a₁, absurd (aeqa₁ ▸ ains₂) na₁s₂)
(λ aint₁ : a ∈ t₁, aint₁))), (λ aint₁ : a ∈ t₁, aint₁))),
calc a₁::t₁ ~ a₁::(s₁++s₂) : skip a₁ (perm_ext dt₁ ds₁s₂ eqv) have nodup t₁, from nodup_of_nodup_cons d₁,
calc a₁::t₁ ~ a₁::(s₁++s₂) : skip a₁ (perm_ext this ds₁s₂ eqv)
... ~ s₁++(a₁::s₂) : !perm_middle ... ~ s₁++(a₁::s₂) : !perm_middle
... = a₂::t₂ : by rewrite t₂_eq ... = a₂::t₂ : by rewrite t₂_eq
end ext end ext

View file

@ -157,13 +157,13 @@ nat.induction_on n
(take H : 0 + m = 0 + k, (take H : 0 + m = 0 + k,
!zero_add⁻¹ ⬝ H ⬝ !zero_add) !zero_add⁻¹ ⬝ H ⬝ !zero_add)
(take (n : ) (IH : n + m = n + k → m = k) (H : succ n + m = succ n + k), (take (n : ) (IH : n + m = n + k → m = k) (H : succ n + m = succ n + k),
have H2 : succ (n + m) = succ (n + k), have succ (n + m) = succ (n + k),
from calc from calc
succ (n + m) = succ n + m : succ_add succ (n + m) = succ n + m : succ_add
... = succ n + k : H ... = succ n + k : H
... = succ (n + k) : succ_add, ... = succ (n + k) : succ_add,
have H3 : n + m = n + k, from succ.inj H2, have n + m = n + k, from succ.inj this,
IH H3) IH this)
theorem add.cancel_right {n m k : } (H : n + m = k + m) : n = k := theorem add.cancel_right {n m k : } (H : n + m = k + m) : n = k :=
have H2 : m + n = m + k, from !add.comm ⬝ H ⬝ !add.comm, have H2 : m + n = m + k, from !add.comm ⬝ H ⬝ !add.comm,

View file

@ -123,10 +123,10 @@ namespace nat
| 0 h := absurd (ball_zero P) h | 0 h := absurd (ball_zero P) h
| (succ n) h := decidable.by_cases | (succ n) h := decidable.by_cases
(λ hp : P n, (λ hp : P n,
have h₁ : ¬ ball n P, from have ¬ ball n P, from
assume b : ball n P, absurd (ball_succ_of_ball b hp) h, assume b : ball n P, absurd (ball_succ_of_ball b hp) h,
have h₂ : {i | i < n ∧ ¬ P i}, from bsub_not_of_not_ball h₁, have {i | i < n ∧ ¬ P i}, from bsub_not_of_not_ball this,
bsub_succ h₂) bsub_succ this)
(λ hn : ¬ P n, bsub_succ_of_pred hn) (λ hn : ¬ P n, bsub_succ_of_pred hn)
theorem bex_not_of_not_ball {n : nat} (H : ¬ ball n P) : bex n (λ n, ¬ P n) := theorem bex_not_of_not_ball {n : nat} (H : ¬ ball n P) : bex n (λ n, ¬ P n) :=
@ -137,8 +137,8 @@ namespace nat
| (succ n) h := by_cases | (succ n) h := by_cases
(λ hp : P n, absurd (bex_succ_of_pred hp) h) (λ hp : P n, absurd (bex_succ_of_pred hp) h)
(λ hn : ¬ P n, (λ hn : ¬ P n,
have h₁ : ¬ bex n P, from have ¬ bex n P, from
assume b : bex n P, absurd (bex_succ b) h, assume b : bex n P, absurd (bex_succ b) h,
have h₂ : ball n (λ n, ¬ P n), from ball_not_of_not_bex h₁, have ball n (λ n, ¬ P n), from ball_not_of_not_bex this,
ball_succ_of_ball h₂ hn) ball_succ_of_ball this hn)
end nat end nat

View file

@ -42,12 +42,12 @@ acc.intro x (λ (y : nat) (l : y ≺ x),
private lemma acc_of_acc_succ {x : nat} : acc gtb (succ x) → acc gtb x := private lemma acc_of_acc_succ {x : nat} : acc gtb (succ x) → acc gtb x :=
assume h, assume h,
acc.intro x (λ (y : nat) (l : y ≺ x), acc.intro x (λ (y : nat) (l : y ≺ x),
have ygtx : x < y, from and.elim_left l,
by_cases by_cases
(λ yeqx : y = succ x, by substvars; assumption) (assume yeqx : y = succ x, by substvars; assumption)
(λ ynex : y ≠ succ x, (assume ynex : y ≠ succ x,
have ygtsx : succ x < y, from lt_of_le_and_ne ygtx (ne.symm ynex), have x < y, from and.elim_left l,
acc.inv h (and.intro ygtsx (and.elim_right l)))) have succ x < y, from lt_of_le_and_ne this (ne.symm ynex),
acc.inv h (and.intro this (and.elim_right l))))
private lemma acc_of_px_of_gt {x y : nat} : p x → y > x → acc gtb y := private lemma acc_of_px_of_gt {x y : nat} : p x → y > x → acc gtb y :=
assume px ygtx, assume px ygtx,

View file

@ -135,14 +135,14 @@ nat.case_strong_induction_on x
show succ x mod y < y, from show succ x mod y < y, from
by_cases -- (succ x < y) by_cases -- (succ x < y)
(assume H1 : succ x < y, (assume H1 : succ x < y,
have H2 : succ x mod y = succ x, from mod_eq_of_lt H1, have succ x mod y = succ x, from mod_eq_of_lt H1,
show succ x mod y < y, from H2⁻¹ ▸ H1) show succ x mod y < y, from this⁻¹ ▸ H1)
(assume H1 : ¬ succ x < y, (assume H1 : ¬ succ x < y,
have H2 : y ≤ succ x, from le_of_not_gt H1, have y ≤ succ x, from le_of_not_gt H1,
have H3 : succ x mod y = (succ x - y) mod y, from mod_eq_sub_mod H H2, have h : succ x mod y = (succ x - y) mod y, from mod_eq_sub_mod H this,
have H4 : succ x - y < succ x, from sub_lt !succ_pos H, have succ x - y < succ x, from sub_lt !succ_pos H,
have H5 : succ x - y ≤ x, from le_of_lt_succ H4, have succ x - y ≤ x, from le_of_lt_succ this,
show succ x mod y < y, from H3⁻¹ ▸ IH _ H5)) show succ x mod y < y, from h⁻¹ ▸ IH _ this))
theorem mod_one (n : ) : n mod 1 = 0 := theorem mod_one (n : ) : n mod 1 = 0 :=
have H1 : n mod 1 < 1, from !mod_lt !succ_pos, have H1 : n mod 1 < 1, from !mod_lt !succ_pos,
@ -368,10 +368,10 @@ by_cases_zero_pos n
assume H2 : n m, assume H2 : n m,
obtain k (Hk : n = m * k), from exists_eq_mul_right_of_dvd H1, obtain k (Hk : n = m * k), from exists_eq_mul_right_of_dvd H1,
obtain l (Hl : m = n * l), from exists_eq_mul_right_of_dvd H2, obtain l (Hl : m = n * l), from exists_eq_mul_right_of_dvd H2,
have H3 : n * (l * k) = n, from !mul.assoc ▸ Hl ▸ Hk⁻¹, have n * (l * k) = n, from !mul.assoc ▸ Hl ▸ Hk⁻¹,
have H4 : l * k = 1, from eq_one_of_mul_eq_self_right Hpos H3, have l * k = 1, from eq_one_of_mul_eq_self_right Hpos this,
have H5 : k = 1, from eq_one_of_mul_eq_one_left H4, have k = 1, from eq_one_of_mul_eq_one_left this,
show m = n, from (mul_one m)⁻¹ ⬝ (H5 ▸ Hk⁻¹)) show m = n, from (mul_one m)⁻¹ ⬝ (this ▸ Hk⁻¹))
theorem mul_div_assoc (m : ) {n k : } (H : k n) : m * n div k = m * (n div k) := theorem mul_div_assoc (m : ) {n k : } (H : k n) : m * n div k = m * (n div k) :=
or.elim (eq_zero_or_pos k) or.elim (eq_zero_or_pos k)

View file

@ -392,11 +392,11 @@ have H4 : k * m < k * l, from mul_lt_mul_of_pos_left H2 (lt_of_le_of_lt !zero_le
lt_of_le_of_lt H3 H4 lt_of_le_of_lt H3 H4
theorem eq_of_mul_eq_mul_left {m k n : } (Hn : n > 0) (H : n * m = n * k) : m = k := theorem eq_of_mul_eq_mul_left {m k n : } (Hn : n > 0) (H : n * m = n * k) : m = k :=
have H2 : n * m ≤ n * k, by rewrite H, have n * m ≤ n * k, by rewrite H,
have H3 : n * k ≤ n * m, by rewrite H, have h : m ≤ k, from le_of_mul_le_mul_left this Hn,
have H4 : m ≤ k, from le_of_mul_le_mul_left H2 Hn, have n * k ≤ n * m, by rewrite H,
have H5 : k ≤ m, from le_of_mul_le_mul_left H3 Hn, have k ≤ m, from le_of_mul_le_mul_left this Hn,
le.antisymm H4 H5 le.antisymm h this
theorem eq_of_mul_eq_mul_right {n m k : } (Hm : m > 0) (H : n * m = k * m) : n = k := theorem eq_of_mul_eq_mul_right {n m k : } (Hm : m > 0) (H : n * m = k * m) : n = k :=
eq_of_mul_eq_mul_left Hm (!mul.comm ▸ !mul.comm ▸ H) eq_of_mul_eq_mul_left Hm (!mul.comm ▸ !mul.comm ▸ H)
@ -410,15 +410,15 @@ eq_zero_or_eq_of_mul_eq_mul_left (!mul.comm ▸ !mul.comm ▸ H)
theorem eq_one_of_mul_eq_one_right {n m : } (H : n * m = 1) : n = 1 := theorem eq_one_of_mul_eq_one_right {n m : } (H : n * m = 1) : n = 1 :=
have H2 : n * m > 0, by rewrite H; apply succ_pos, have H2 : n * m > 0, by rewrite H; apply succ_pos,
have H3 : n > 0, from pos_of_mul_pos_right H2,
have H4 : m > 0, from pos_of_mul_pos_left H2,
or.elim (le_or_gt n 1) or.elim (le_or_gt n 1)
(assume H5 : n ≤ 1, (assume H5 : n ≤ 1,
show n = 1, from le.antisymm H5 (succ_le_of_lt H3)) have n > 0, from pos_of_mul_pos_right H2,
show n = 1, from le.antisymm H5 (succ_le_of_lt this))
(assume H5 : n > 1, (assume H5 : n > 1,
have H6 : n * m ≥ 2 * 1, from mul_le_mul (succ_le_of_lt H5) (succ_le_of_lt H4), have m > 0, from pos_of_mul_pos_left H2,
have H7 : 1 ≥ 2, from !mul_one ▸ H ▸ H6, have n * m ≥ 2 * 1, from mul_le_mul (succ_le_of_lt H5) (succ_le_of_lt this),
absurd !lt_succ_self (not_lt_of_ge H7)) have 1 ≥ 2, from !mul_one ▸ H ▸ this,
absurd !lt_succ_self (not_lt_of_ge this))
theorem eq_one_of_mul_eq_one_left {n m : } (H : n * m = 1) : m = 1 := theorem eq_one_of_mul_eq_one_left {n m : } (H : n * m = 1) : m = 1 :=
eq_one_of_mul_eq_one_right (!mul.comm ▸ H) eq_one_of_mul_eq_one_right (!mul.comm ▸ H)

View file

@ -64,23 +64,23 @@ assume h d, obtain h₁ h₂, from h, h₂ m d
lemma gt_one_of_pos_of_prime_dvd {i p : nat} : prime p → 0 < i → i mod p = 0 → 1 < i := lemma gt_one_of_pos_of_prime_dvd {i p : nat} : prime p → 0 < i → i mod p = 0 → 1 < i :=
assume ipp pos h, assume ipp pos h,
have h₁ : p i, from dvd_of_mod_eq_zero h, have h₁ : p ≥ 2, from ge_two_of_prime ipp,
have h₂ : p ≥ 2, from ge_two_of_prime ipp, have p i, from dvd_of_mod_eq_zero h,
have h₃ : p ≤ i, from le_of_dvd pos h₁, have p ≤ i, from le_of_dvd pos this,
lt_of_succ_le (le.trans h₂ h₃) lt_of_succ_le (le.trans h₁ this)
definition sub_dvd_of_not_prime {n : nat} : n ≥ 2 → ¬ prime n → {m | m n ∧ m ≠ 1 ∧ m ≠ n} := definition sub_dvd_of_not_prime {n : nat} : n ≥ 2 → ¬ prime n → {m | m n ∧ m ≠ 1 ∧ m ≠ n} :=
assume h₁ h₂, assume h₁ h₂,
have h₃ : ¬ prime_ext n, from iff.mpr (not_iff_not_of_iff !prime_ext_iff_prime) h₂, have ¬ prime_ext n, from iff.mpr (not_iff_not_of_iff !prime_ext_iff_prime) h₂,
have h₄ : ¬ n ≥ 2 ¬ (∀ m, m ≤ n → m n → m = 1 m = n), from iff.mp !not_and_iff_not_or_not h₃, have ¬ n ≥ 2 ¬ (∀ m, m ≤ n → m n → m = 1 m = n), from iff.mp !not_and_iff_not_or_not this,
have h₅ : ¬ (∀ m, m ≤ n → m n → m = 1 m = n), from or_resolve_right h₄ (not_not_intro h₁), have ¬ (∀ m, m ≤ n → m n → m = 1 m = n), from or_resolve_right this (not_not_intro h₁),
have h₆ : ¬ (∀ m, m < succ n → m n → m = 1 m = n), from have ¬ (∀ m, m < succ n → m n → m = 1 m = n), from
assume h, absurd (λ m hl hd, h m (lt_succ_of_le hl) hd) h₅, assume h, absurd (λ m hl hd, h m (lt_succ_of_le hl) hd) this,
have h₇ : {m | m < succ n ∧ ¬(m n → m = 1 m = n)}, from bsub_not_of_not_ball h₆, have {m | m < succ n ∧ ¬(m n → m = 1 m = n)}, from bsub_not_of_not_ball this,
obtain m hlt (h₈ : ¬(m n → m = 1 m = n)), from h₇, obtain m hlt (h₃ : ¬(m n → m = 1 m = n)), from this,
obtain (h₈ : m n) (h₉ : ¬ (m = 1 m = n)), from iff.mp !not_implies_iff_and_not h₈, obtain (h₄ : m n) (h₅ : ¬ (m = 1 m = n)), from iff.mp !not_implies_iff_and_not h₃,
have h₁₀ : ¬ m = 1 ∧ ¬ m = n, from iff.mp !not_or_iff_not_and_not h₉, have ¬ m = 1 ∧ ¬ m = n, from iff.mp !not_or_iff_not_and_not h₅,
subtype.tag m (and.intro h₈ h₁₀) subtype.tag m (and.intro h₄ this)
theorem ex_dvd_of_not_prime {n : nat} : n ≥ 2 → ¬ prime n → ∃ m, m n ∧ m ≠ 1 ∧ m ≠ n := theorem ex_dvd_of_not_prime {n : nat} : n ≥ 2 → ¬ prime n → ∃ m, m n ∧ m ≠ 1 ∧ m ≠ n :=
assume h₁ h₂, ex_of_sub (sub_dvd_of_not_prime h₁ h₂) assume h₁ h₂, ex_of_sub (sub_dvd_of_not_prime h₁ h₂)
@ -121,20 +121,20 @@ open eq.ops
definition infinite_primes (n : nat) : {p | p ≥ n ∧ prime p} := definition infinite_primes (n : nat) : {p | p ≥ n ∧ prime p} :=
let m := fact (n + 1) in let m := fact (n + 1) in
have m_ge_1 : m ≥ 1, from le_of_lt_succ (succ_lt_succ (fact_pos _)), have m ≥ 1, from le_of_lt_succ (succ_lt_succ (fact_pos _)),
have m1_ge_2 : m + 1 ≥ 2, from succ_le_succ m_ge_1, have m + 1 ≥ 2, from succ_le_succ this,
obtain p (prime_p : prime p) (p_dvd_m1 : p m + 1), from sub_prime_and_dvd m1_ge_2, obtain p (prime_p : prime p) (p_dvd_m1 : p m + 1), from sub_prime_and_dvd this,
have p_ge_2 : p ≥ 2, from ge_two_of_prime prime_p, have p_ge_2 : p ≥ 2, from ge_two_of_prime prime_p,
have p_gt_0 : p > 0, from lt_of_succ_lt (lt_of_succ_le p_ge_2), have p_gt_0 : p > 0, from lt_of_succ_lt (lt_of_succ_le p_ge_2),
have p_ge_n : p ≥ n, from by_contradiction have p ≥ n, from by_contradiction
(assume h₁ : ¬ p ≥ n, (assume h₁ : ¬ p ≥ n,
have h₂ : p < n, from lt_of_not_ge h₁, have p < n, from lt_of_not_ge h₁,
have h₃ : p ≤ n + 1, from le_of_lt (lt.step h₂), have p ≤ n + 1, from le_of_lt (lt.step this),
have h₄ : p m, from dvd_fact p_gt_0 h₃, have p m, from dvd_fact p_gt_0 this,
have h₅ : p 1, from dvd_of_dvd_add_right (!add.comm ▸ p_dvd_m1) h₄, have p 1, from dvd_of_dvd_add_right (!add.comm ▸ p_dvd_m1) this,
have h₆ : p ≤ 1, from le_of_dvd zero_lt_one h₅, have p ≤ 1, from le_of_dvd zero_lt_one this,
absurd (le.trans p_ge_2 h₆) dec_trivial), absurd (le.trans p_ge_2 this) dec_trivial),
subtype.tag p (and.intro p_ge_n prime_p) subtype.tag p (and.intro this prime_p)
lemma ex_infinite_primes (n : nat) : ∃ p, p ≥ n ∧ prime p := lemma ex_infinite_primes (n : nat) : ∃ p, p ≥ n ∧ prime p :=
ex_of_sub (infinite_primes n) ex_of_sub (infinite_primes n)
@ -158,10 +158,10 @@ by_contradiction (assume nc : ¬ coprime p n, npdvdn (dvd_of_prime_of_not_coprim
theorem not_dvd_of_prime_of_coprime {p n : } (primep : prime p) (cop : coprime p n) : ¬ p n := theorem not_dvd_of_prime_of_coprime {p n : } (primep : prime p) (cop : coprime p n) : ¬ p n :=
assume pdvdn : p n, assume pdvdn : p n,
have H1 : p gcd p n, from dvd_gcd !dvd.refl pdvdn, have p gcd p n, from dvd_gcd !dvd.refl pdvdn,
have H2 : p ≤ gcd p n, from le_of_dvd (!gcd_pos_of_pos_left (pos_of_prime primep)) H1, have p ≤ gcd p n, from le_of_dvd (!gcd_pos_of_pos_left (pos_of_prime primep)) this,
have H3 : 2 ≤ 1, from le.trans (ge_two_of_prime primep) (cop ▸ H2), have 2 ≤ 1, from le.trans (ge_two_of_prime primep) (cop ▸ this),
show false, from !not_succ_le_self H3 show false, from !not_succ_le_self this
theorem not_coprime_of_prime_dvd {p n : } (primep : prime p) (pdvdn : p n) : ¬ coprime p n := theorem not_coprime_of_prime_dvd {p n : } (primep : prime p) (pdvdn : p n) : ¬ coprime p n :=
assume cop, not_dvd_of_prime_of_coprime primep cop pdvdn assume cop, not_dvd_of_prime_of_coprime primep cop pdvdn
@ -169,8 +169,8 @@ assume cop, not_dvd_of_prime_of_coprime primep cop pdvdn
theorem dvd_of_prime_of_dvd_mul_left {p m n : } (primep : prime p) theorem dvd_of_prime_of_dvd_mul_left {p m n : } (primep : prime p)
(Hmn : p m * n) (Hm : ¬ p m) : (Hmn : p m * n) (Hm : ¬ p m) :
p n := p n :=
have copm : coprime p m, from coprime_of_prime_of_not_dvd primep Hm, have coprime p m, from coprime_of_prime_of_not_dvd primep Hm,
show p n, from dvd_of_coprime_of_dvd_mul_left copm Hmn show p n, from dvd_of_coprime_of_dvd_mul_left this Hmn
theorem dvd_of_prime_of_dvd_mul_right {p m n : } (primep : prime p) theorem dvd_of_prime_of_dvd_mul_right {p m n : } (primep : prime p)
(Hmn : p m * n) (Hn : ¬ p n) : (Hmn : p m * n) (Hn : ¬ p n) :
@ -188,12 +188,12 @@ lemma dvd_or_dvd_of_prime_of_dvd_mul {p m n : nat} : prime p → p m * n →
lemma dvd_of_prime_of_dvd_pow {p m : nat} : ∀ {n}, prime p → p m^n → p m lemma dvd_of_prime_of_dvd_pow {p m : nat} : ∀ {n}, prime p → p m^n → p m
| 0 hp hd := | 0 hp hd :=
assert peq1 : p = 1, from eq_one_of_dvd_one hd, assert p = 1, from eq_one_of_dvd_one hd,
have h₂ : 1 ≥ 2, by rewrite -peq1; apply ge_two_of_prime hp, have 1 ≥ 2, by rewrite -this; apply ge_two_of_prime hp,
absurd h₂ dec_trivial absurd this dec_trivial
| (succ n) hp hd := | (succ n) hp hd :=
have hd₁ : p (m^n)*m, by rewrite [pow_succ at hd]; exact hd, have p (m^n)*m, by rewrite [pow_succ at hd]; exact hd,
or.elim (dvd_or_dvd_of_prime_of_dvd_mul hp hd₁) or.elim (dvd_or_dvd_of_prime_of_dvd_mul hp this)
(λ h : p m^n, dvd_of_prime_of_dvd_pow hp h) (λ h : p m^n, dvd_of_prime_of_dvd_pow hp h)
(λ h : p m, h) (λ h : p m, h)
@ -202,13 +202,13 @@ lemma coprime_pow_of_prime_of_not_dvd {p m a : nat} : prime p → ¬ p a →
lemma coprime_primes {p q : nat} : prime p → prime q → p ≠ q → coprime p q := lemma coprime_primes {p q : nat} : prime p → prime q → p ≠ q → coprime p q :=
λ hp hq hn, λ hp hq hn,
assert d₁ : gcd p q p, from !gcd_dvd_left, assert gcd p q p, from !gcd_dvd_left,
assert d₂ : gcd p q q, from !gcd_dvd_right, or.elim (eq_one_or_eq_self_of_prime_of_dvd hp this)
or.elim (eq_one_or_eq_self_of_prime_of_dvd hp d₁)
(λ h : gcd p q = 1, h) (λ h : gcd p q = 1, h)
(λ h : gcd p q = p, (λ h : gcd p q = p,
have d₃ : p q, by rewrite -h; exact d₂, assert gcd p q q, from !gcd_dvd_right,
or.elim (eq_one_or_eq_self_of_prime_of_dvd hq d₃) have p q, by rewrite -h; exact this,
or.elim (eq_one_or_eq_self_of_prime_of_dvd hq this)
(λ h₁ : p = 1, by subst p; exact absurd hp not_prime_one) (λ h₁ : p = 1, by subst p; exact absurd hp not_prime_one)
(λ he : p = q, by contradiction)) (λ he : p = q, by contradiction))

View file

@ -16,7 +16,7 @@
"alias" "help" "environment" "options" "precedence" "reserve" "alias" "help" "environment" "options" "precedence" "reserve"
"match" "infix" "infixl" "infixr" "notation" "postfix" "prefix" "match" "infix" "infixl" "infixr" "notation" "postfix" "prefix"
"tactic_infix" "tactic_infixl" "tactic_infixr" "tactic_notation" "tactic_postfix" "tactic_prefix" "tactic_infix" "tactic_infixl" "tactic_infixr" "tactic_notation" "tactic_postfix" "tactic_prefix"
"eval" "check" "end" "reveal" "eval" "check" "end" "reveal" "this"
"using" "namespace" "section" "fields" "find_decl" "using" "namespace" "section" "fields" "find_decl"
"attribute" "local" "set_option" "extends" "include" "omit" "classes" "attribute" "local" "set_option" "extends" "include" "omit" "classes"
"instances" "coercions" "metaclasses" "raw" "migrate" "replacing") "instances" "coercions" "metaclasses" "raw" "migrate" "replacing")

View file

@ -369,7 +369,7 @@ static expr parse_have_core(parser & p, pos_info const & pos, optional<expr> con
if (p.curr_is_token(get_visible_tk())) { if (p.curr_is_token(get_visible_tk())) {
p.next(); p.next();
is_visible = true; is_visible = true;
id = p.mk_fresh_name(); id = get_this_tk();
prop = p.parse_expr(); prop = p.parse_expr();
} else if (p.curr_is_identifier()) { } else if (p.curr_is_identifier()) {
id = p.get_name_val(); id = p.get_name_val();
@ -384,11 +384,15 @@ static expr parse_have_core(parser & p, pos_info const & pos, optional<expr> con
prop = p.parse_expr(); prop = p.parse_expr();
} else { } else {
expr left = p.id_to_expr(id, id_pos); expr left = p.id_to_expr(id, id_pos);
id = p.mk_fresh_name(); id = get_this_tk();
prop = p.parse_led(left); unsigned rbp = 0;
while (rbp < p.curr_expr_lbp()) {
left = p.parse_led(left);
}
prop = left;
} }
} else { } else {
id = p.mk_fresh_name(); id = get_this_tk();
prop = p.parse_expr(); prop = p.parse_expr();
} }
expr proof; expr proof;

View file

@ -141,6 +141,7 @@ static name const * g_fields_tk = nullptr;
static name const * g_trust_tk = nullptr; static name const * g_trust_tk = nullptr;
static name const * g_metaclasses_tk = nullptr; static name const * g_metaclasses_tk = nullptr;
static name const * g_inductive_tk = nullptr; static name const * g_inductive_tk = nullptr;
static name const * g_this_tk = nullptr;
void initialize_tokens() { void initialize_tokens() {
g_period_tk = new name{"."}; g_period_tk = new name{"."};
g_placeholder_tk = new name{"_"}; g_placeholder_tk = new name{"_"};
@ -280,6 +281,7 @@ void initialize_tokens() {
g_trust_tk = new name{"trust"}; g_trust_tk = new name{"trust"};
g_metaclasses_tk = new name{"metaclasses"}; g_metaclasses_tk = new name{"metaclasses"};
g_inductive_tk = new name{"inductive"}; g_inductive_tk = new name{"inductive"};
g_this_tk = new name{"this"};
} }
void finalize_tokens() { void finalize_tokens() {
delete g_period_tk; delete g_period_tk;
@ -420,6 +422,7 @@ void finalize_tokens() {
delete g_trust_tk; delete g_trust_tk;
delete g_metaclasses_tk; delete g_metaclasses_tk;
delete g_inductive_tk; delete g_inductive_tk;
delete g_this_tk;
} }
name const & get_period_tk() { return *g_period_tk; } name const & get_period_tk() { return *g_period_tk; }
name const & get_placeholder_tk() { return *g_placeholder_tk; } name const & get_placeholder_tk() { return *g_placeholder_tk; }
@ -559,4 +562,5 @@ name const & get_fields_tk() { return *g_fields_tk; }
name const & get_trust_tk() { return *g_trust_tk; } name const & get_trust_tk() { return *g_trust_tk; }
name const & get_metaclasses_tk() { return *g_metaclasses_tk; } name const & get_metaclasses_tk() { return *g_metaclasses_tk; }
name const & get_inductive_tk() { return *g_inductive_tk; } name const & get_inductive_tk() { return *g_inductive_tk; }
name const & get_this_tk() { return *g_this_tk; }
} }

View file

@ -143,4 +143,5 @@ name const & get_fields_tk();
name const & get_trust_tk(); name const & get_trust_tk();
name const & get_metaclasses_tk(); name const & get_metaclasses_tk();
name const & get_inductive_tk(); name const & get_inductive_tk();
name const & get_this_tk();
} }

View file

@ -136,3 +136,4 @@ fields fields
trust trust trust trust
metaclasses metaclasses metaclasses metaclasses
inductive inductive inductive inductive
this this