feat(library/data/list): perm is decidable
This commit is contained in:
parent
1d87016f03
commit
9306830d8c
2 changed files with 71 additions and 0 deletions
|
@ -66,6 +66,10 @@ theorem length_append : ∀ (s t : list T), length (s ++ t) = length s + length
|
||||||
... = (length s + 1) + length t : add.succ_left
|
... = (length s + 1) + length t : add.succ_left
|
||||||
... = length (a :: s) + length t : rfl
|
... = length (a :: s) + length t : rfl
|
||||||
|
|
||||||
|
theorem eq_nil_of_length_eq_zero : ∀ {l : list T}, length l = 0 → l = []
|
||||||
|
| [] H := rfl
|
||||||
|
| (a::s) H := nat.no_confusion H
|
||||||
|
|
||||||
-- add_rewrite length_nil length_cons
|
-- add_rewrite length_nil length_cons
|
||||||
|
|
||||||
/- concat -/
|
/- concat -/
|
||||||
|
|
|
@ -155,6 +155,35 @@ assume p, calc
|
||||||
... = l₁++(l₂++[a]) : append.assoc
|
... = l₁++(l₂++[a]) : append.assoc
|
||||||
... ~ l₁++(a::l₂) : perm_app_right l₁ (symm (perm_cons_app a l₂))
|
... ~ l₁++(a::l₂) : perm_app_right l₁ (symm (perm_cons_app a l₂))
|
||||||
|
|
||||||
|
theorem perm_erase [H : decidable_eq A] {a : A} : ∀ {l : list A}, a ∈ l → l ~ a::(erase a l)
|
||||||
|
| [] h := absurd h !not_mem_nil
|
||||||
|
| (x::t) h :=
|
||||||
|
if Heq : a = x then
|
||||||
|
by rewrite [Heq, erase_cons_head]; exact !perm.refl
|
||||||
|
else
|
||||||
|
have aint : a ∈ t, from mem_of_ne_of_mem Heq h,
|
||||||
|
have aux : t ~ a :: erase a t, from perm_erase aint,
|
||||||
|
calc x::t ~ x::a::(erase a t) : skip x aux
|
||||||
|
... ~ a::x::(erase a t) : swap
|
||||||
|
... = a::(erase a (x::t)) : by rewrite [!erase_cons_tail Heq]
|
||||||
|
|
||||||
|
theorem erase_perm_erase_of_perm [H : decidable_eq A] (a : A) {l₁ l₂ : list A} : l₁ ~ l₂ → erase a l₁ ~ erase a l₂ :=
|
||||||
|
assume p, perm.induction_on p
|
||||||
|
nil
|
||||||
|
(λ x t₁ t₂ p r,
|
||||||
|
if Hax : a = x
|
||||||
|
then by rewrite [Hax, *erase_cons_head]; exact p
|
||||||
|
else by rewrite [*erase_cons_tail _ Hax]; exact (skip x r))
|
||||||
|
(λ x y l,
|
||||||
|
if Hax : a = x
|
||||||
|
then (if Hay : a = y
|
||||||
|
then by rewrite [-Hax, -Hay]; exact !perm.refl
|
||||||
|
else by rewrite [-Hax, erase_cons_tail _ Hay, *erase_cons_head]; exact !perm.refl)
|
||||||
|
else (if Hay : a = y
|
||||||
|
then by rewrite [-Hay, erase_cons_tail _ Hax, *erase_cons_head]; exact !perm.refl
|
||||||
|
else by rewrite[erase_cons_tail _ Hax, *erase_cons_tail _ Hay, erase_cons_tail _ Hax]; exact !swap))
|
||||||
|
(λ l₁ l₂ l₃ p₁ p₂ r₁ r₂, trans r₁ r₂)
|
||||||
|
|
||||||
theorem perm_induction_on {P : list A → list A → Prop} {l₁ l₂ : list A} (p : l₁ ~ l₂)
|
theorem perm_induction_on {P : list A → list A → Prop} {l₁ l₂ : list A} (p : l₁ ~ l₂)
|
||||||
(h₁ : P [] [])
|
(h₁ : P [] [])
|
||||||
(h₂ : ∀ x l₁ l₂, l₁ ~ l₂ → P l₁ l₂ → P (x::l₁) (x::l₂))
|
(h₂ : ∀ x l₁ l₂, l₁ ~ l₂ → P l₁ l₂ → P (x::l₁) (x::l₂))
|
||||||
|
@ -184,4 +213,42 @@ assume q, qeq.induction_on q
|
||||||
(λ b t₁ t₂ q₁ r₁, calc
|
(λ b t₁ t₂ q₁ r₁, calc
|
||||||
b::t₂ ~ b::a::t₁ : skip b r₁
|
b::t₂ ~ b::a::t₁ : skip b r₁
|
||||||
... ~ a::b::t₁ : swap)
|
... ~ a::b::t₁ : swap)
|
||||||
|
|
||||||
|
/- permutation is decidable if A has decidable equality -/
|
||||||
|
section dec
|
||||||
|
open decidable
|
||||||
|
variable [Ha : decidable_eq A]
|
||||||
|
include Ha
|
||||||
|
|
||||||
|
definition decidable_perm_aux : ∀ (n : nat) (l₁ l₂ : list A), length l₁ = n → length l₂ = n → decidable (l₁ ~ l₂)
|
||||||
|
| 0 l₁ l₂ H₁ H₂ :=
|
||||||
|
assert l₁n : l₁ = [], from eq_nil_of_length_eq_zero H₁,
|
||||||
|
assert l₂n : l₂ = [], from eq_nil_of_length_eq_zero H₂,
|
||||||
|
by rewrite [l₁n, l₂n]; exact (inl perm.nil)
|
||||||
|
| (n+1) (x::t₁) l₂ H₁ H₂ :=
|
||||||
|
if xinl₂ : x ∈ l₂ then
|
||||||
|
let t₂ : list A := erase x l₂ in
|
||||||
|
have len_t₁ : length t₁ = n, from nat.no_confusion H₁ (λ e, e),
|
||||||
|
assert len_t₂_aux : length t₂ = pred (length l₂), from length_erase_of_mem x l₂ xinl₂,
|
||||||
|
assert len_t₂ : length t₂ = n, by rewrite [len_t₂_aux, H₂],
|
||||||
|
match decidable_perm_aux n t₁ t₂ len_t₁ len_t₂ with
|
||||||
|
| inl p := inl (calc
|
||||||
|
x::t₁ ~ x::(erase x l₂) : skip x p
|
||||||
|
... ~ l₂ : perm_erase xinl₂)
|
||||||
|
| inr np := inr (λ p : x::t₁ ~ l₂,
|
||||||
|
assert p₁ : erase x (x::t₁) ~ erase x l₂, from erase_perm_erase_of_perm x p,
|
||||||
|
have p₂ : t₁ ~ erase x l₂, by rewrite [erase_cons_head at p₁]; exact p₁,
|
||||||
|
absurd p₂ np)
|
||||||
|
end
|
||||||
|
else
|
||||||
|
inr (λ p : x::t₁ ~ l₂, absurd (mem_perm x (x::t₁) l₂ p !mem_cons) xinl₂)
|
||||||
|
|
||||||
|
definition decidable_perm [instance] : ∀ (l₁ l₂ : list A), decidable (l₁ ~ l₂) :=
|
||||||
|
λ l₁ l₂,
|
||||||
|
if Hl : length l₁ = length l₂ then
|
||||||
|
decidable_perm_aux (length l₂) l₁ l₂ Hl rfl
|
||||||
|
else
|
||||||
|
inr (λ p : l₁ ~ l₂, absurd (length_eq_length_of_perm p) Hl)
|
||||||
|
end dec
|
||||||
|
|
||||||
end perm
|
end perm
|
||||||
|
|
Loading…
Reference in a new issue