feat(library/blast/congruence_closure): basic support for heterogeneous equality
We still have to process the general congruence lemmas.
This commit is contained in:
parent
22a6b7f1c3
commit
934f3b67ff
7 changed files with 268 additions and 76 deletions
|
@ -587,6 +587,8 @@ struct app_builder::imp {
|
|||
}
|
||||
|
||||
expr mk_eq_of_heq(expr const & H) {
|
||||
if (is_constant(get_app_fn(H), get_heq_of_eq_name()))
|
||||
return app_arg(H);
|
||||
expr p = m_ctx->relaxed_whnf(m_ctx->infer(H));
|
||||
expr A, a, B, b;
|
||||
if (!is_heq(p, A, a, B, b)) {
|
||||
|
|
|
@ -731,6 +731,10 @@ public:
|
|||
return m_congr_lemma_manager.mk_congr(fn);
|
||||
}
|
||||
|
||||
optional<congr_lemma> mk_hcongr_lemma(expr const & fn, unsigned num_args) {
|
||||
return m_congr_lemma_manager.mk_hcongr(fn, num_args);
|
||||
}
|
||||
|
||||
optional<congr_lemma> mk_specialized_congr_lemma(expr const & a) {
|
||||
return m_congr_lemma_manager.mk_specialized_congr(a);
|
||||
}
|
||||
|
@ -1114,6 +1118,11 @@ optional<congr_lemma> mk_congr_lemma(expr const & fn) {
|
|||
return g_blastenv->mk_congr_lemma(fn);
|
||||
}
|
||||
|
||||
optional<congr_lemma> mk_hcongr_lemma(expr const & fn, unsigned num_args) {
|
||||
lean_assert(g_blastenv);
|
||||
return g_blastenv->mk_hcongr_lemma(fn, num_args);
|
||||
}
|
||||
|
||||
optional<congr_lemma> mk_specialized_congr_lemma(expr const & a) {
|
||||
lean_assert(g_blastenv);
|
||||
return g_blastenv->mk_specialized_congr_lemma(a);
|
||||
|
|
|
@ -148,6 +148,9 @@ optional<congr_lemma> mk_congr_lemma(expr const & fn);
|
|||
and the arguments are taken into account when computing the lemma.
|
||||
\pre is_app(a) */
|
||||
optional<congr_lemma> mk_specialized_congr_lemma(expr const & a);
|
||||
/** \brief Create more general congruence lemma based on heterogeneous equality. */
|
||||
optional<congr_lemma> mk_hcongr_lemma(expr const & fn, unsigned num_args);
|
||||
|
||||
optional<congr_lemma> mk_rel_iff_congr(expr const & fn);
|
||||
optional<congr_lemma> mk_rel_eq_congr(expr const & fn);
|
||||
|
||||
|
|
|
@ -18,7 +18,7 @@ Author: Leonardo de Moura
|
|||
#include "library/blast/options.h"
|
||||
|
||||
#ifndef LEAN_DEFAULT_BLAST_CC_HEQ
|
||||
#define LEAN_DEFAULT_BLAST_CC_HEQ true
|
||||
#define LEAN_DEFAULT_BLAST_CC_HEQ false
|
||||
#endif
|
||||
|
||||
namespace lean {
|
||||
|
@ -51,9 +51,25 @@ struct congr_lemma_key_eq_fn {
|
|||
}
|
||||
};
|
||||
|
||||
LEAN_THREAD_VALUE(bool, g_heq_based, false);
|
||||
|
||||
static list<optional<name>> rel_names_from_arg_kinds(list<congr_arg_kind> const & kinds, name const & R) {
|
||||
return map2<optional<name>>(kinds, [&](congr_arg_kind k) {
|
||||
return k == congr_arg_kind::Eq ? optional<name>(R) : optional<name>();
|
||||
switch (k) {
|
||||
case congr_arg_kind::Eq:
|
||||
return optional<name>(R);
|
||||
case congr_arg_kind::HEq:
|
||||
if (g_heq_based && (R == get_eq_name() || R == get_heq_name())) {
|
||||
/* Remark: we store equality and heterogeneous equality in the same class. */
|
||||
return optional<name>(get_eq_name());
|
||||
} else {
|
||||
return optional<name>();
|
||||
}
|
||||
case congr_arg_kind::Fixed: case congr_arg_kind::Cast:
|
||||
case congr_arg_kind::FixedNoParam:
|
||||
return optional<name>();
|
||||
}
|
||||
lean_unreachable();
|
||||
});
|
||||
}
|
||||
|
||||
|
@ -62,23 +78,26 @@ ext_congr_lemma::ext_congr_lemma(congr_lemma const & H):
|
|||
m_congr_lemma(H),
|
||||
m_rel_names(rel_names_from_arg_kinds(H.get_arg_kinds(), get_eq_name())),
|
||||
m_lift_needed(false),
|
||||
m_fixed_fun(true) {}
|
||||
ext_congr_lemma::ext_congr_lemma(name const & R, congr_lemma const & H, bool lift_needed):
|
||||
m_fixed_fun(true),
|
||||
m_heq_based(false) {}
|
||||
ext_congr_lemma::ext_congr_lemma(name const & R, congr_lemma const & H, bool lift_needed, bool heq_based):
|
||||
m_R(R),
|
||||
m_congr_lemma(H),
|
||||
m_rel_names(rel_names_from_arg_kinds(H.get_arg_kinds(), get_eq_name())),
|
||||
m_lift_needed(lift_needed),
|
||||
m_fixed_fun(true) {}
|
||||
m_fixed_fun(true),
|
||||
m_heq_based(heq_based) {}
|
||||
ext_congr_lemma::ext_congr_lemma(name const & R, congr_lemma const & H, list<optional<name>> const & rel_names, bool lift_needed):
|
||||
m_R(R),
|
||||
m_congr_lemma(H),
|
||||
m_rel_names(rel_names),
|
||||
m_lift_needed(lift_needed),
|
||||
m_fixed_fun(true) {}
|
||||
m_fixed_fun(true),
|
||||
m_heq_based(false) {}
|
||||
|
||||
/* We use the following cache for user-defined lemmas and automatically generated ones. */
|
||||
typedef std::unordered_map<congr_lemma_key, optional<ext_congr_lemma>, congr_lemma_key_hash_fn, congr_lemma_key_eq_fn> congr_cache;
|
||||
typedef std::tuple<name, expr, expr, expr> cc_todo_entry;
|
||||
typedef std::tuple<name, expr, expr, expr, bool> cc_todo_entry;
|
||||
|
||||
static expr * g_congr_mark = nullptr; // dummy congruence proof, it is just a placeholder.
|
||||
static expr * g_iff_true_mark = nullptr; // dummy iff_true proof, it is just a placeholder.
|
||||
|
@ -96,13 +115,14 @@ static void clear_todo() {
|
|||
get_todo().clear();
|
||||
}
|
||||
|
||||
static void push_todo(name const & R, expr const & lhs, expr const & rhs, expr const & H) {
|
||||
get_todo().emplace_back(R, lhs, rhs, H);
|
||||
static void push_todo(name const & R, expr const & lhs, expr const & rhs, expr const & H, bool heq_proof) {
|
||||
get_todo().emplace_back(R, lhs, rhs, H, heq_proof);
|
||||
}
|
||||
|
||||
scope_congruence_closure::scope_congruence_closure():
|
||||
m_old_cache(g_congr_cache) {
|
||||
g_congr_cache = new congr_cache();
|
||||
g_heq_based = is_standard(env()) && get_blast_cc_heq(ios().get_options());
|
||||
}
|
||||
|
||||
scope_congruence_closure::~scope_congruence_closure() {
|
||||
|
@ -136,6 +156,7 @@ void congruence_closure::mk_entry_core(name const & R, expr const & e, bool to_p
|
|||
n.m_interpreted = interpreted;
|
||||
n.m_constructor = constructor;
|
||||
n.m_to_propagate = to_propagate;
|
||||
n.m_heq_proofs = false;
|
||||
n.m_mt = m_gmt;
|
||||
m_entries.insert(eqc_key(R, e), n);
|
||||
if (R != get_eq_name()) {
|
||||
|
@ -146,7 +167,8 @@ void congruence_closure::mk_entry_core(name const & R, expr const & e, bool to_p
|
|||
expr it = n->m_next;
|
||||
while (it != e) {
|
||||
if (m_entries.find(eqc_key(R, it))) {
|
||||
push_todo(R, e, it, *g_lift_mark);
|
||||
bool heq_proof = false;
|
||||
push_todo(R, e, it, *g_lift_mark, heq_proof);
|
||||
break;
|
||||
}
|
||||
auto it_n = m_entries.find(eqc_key(get_eq_name(), it));
|
||||
|
@ -332,7 +354,8 @@ static optional<ext_congr_lemma> mk_relation_congr_lemma(name const & R, expr co
|
|||
if (R == get_iff_name()) {
|
||||
if (optional<congr_lemma> cgr = mk_rel_iff_congr(fn)) {
|
||||
auto child_rel_names = rel_names_from_arg_kinds(cgr->get_arg_kinds(), const_name(fn));
|
||||
return optional<ext_congr_lemma>(R, *cgr, child_rel_names, false);
|
||||
bool lift_needed = false;
|
||||
return optional<ext_congr_lemma>(R, *cgr, child_rel_names, lift_needed);
|
||||
}
|
||||
}
|
||||
if (optional<congr_lemma> cgr = mk_rel_eq_congr(fn)) {
|
||||
|
@ -352,13 +375,40 @@ static optional<ext_congr_lemma> mk_ext_specialized_congr_lemma(name const & R,
|
|||
if (!eq_congr)
|
||||
return optional<ext_congr_lemma>();
|
||||
ext_congr_lemma res1(*eq_congr);
|
||||
// If all arguments are Eq kind, then we can use generic congr axiom and consider equality for the function.
|
||||
/* If all arguments are Eq kind, then we can use generic congr axiom and consider equality for the function. */
|
||||
if (eq_congr->all_eq_kind())
|
||||
res1.m_fixed_fun = false;
|
||||
if (R == get_eq_name())
|
||||
return optional<ext_congr_lemma>(res1);
|
||||
bool lift_needed = true;
|
||||
return optional<ext_congr_lemma>(R, *eq_congr, lift_needed);
|
||||
bool heq_based = false;
|
||||
return optional<ext_congr_lemma>(R, *eq_congr, lift_needed, heq_based);
|
||||
}
|
||||
|
||||
/* Automatically generated congruence lemma based on heterogeneous equality. */
|
||||
static optional<ext_congr_lemma> mk_hcongr_lemma(name const & R, expr const & fn, unsigned nargs) {
|
||||
optional<congr_lemma> eq_congr = mk_hcongr_lemma(fn, nargs);
|
||||
if (!eq_congr)
|
||||
return optional<ext_congr_lemma>();
|
||||
ext_congr_lemma res1(*eq_congr);
|
||||
/* If all arguments are Eq kind, then we can use generic congr axiom and consider equality for the function. */
|
||||
if (eq_congr->all_eq_kind())
|
||||
res1.m_fixed_fun = false;
|
||||
if (R == get_eq_name() || R == get_heq_name())
|
||||
return optional<ext_congr_lemma>(res1);
|
||||
/* If R is not equality (=) nor heterogeneous equality (==),
|
||||
we try to lift, but we can only lift if the congruence lemma produces an equality. */
|
||||
expr type = eq_congr->get_type();
|
||||
while (is_pi(type)) type = binding_body(type);
|
||||
lean_assert(is_eq(type) || is_heq(type));
|
||||
if (is_heq(type)) {
|
||||
/* We cannot lift heterogeneous equality. */
|
||||
return optional<ext_congr_lemma>();
|
||||
} else {
|
||||
bool heq_based = !eq_congr->all_eq_kind() || is_heq(type);
|
||||
bool lift_needed = true;
|
||||
return optional<ext_congr_lemma>(R, *eq_congr, lift_needed, heq_based);
|
||||
}
|
||||
}
|
||||
|
||||
optional<ext_congr_lemma> mk_ext_congr_lemma(name const & R, expr const & e) {
|
||||
|
@ -369,6 +419,25 @@ optional<ext_congr_lemma> mk_ext_congr_lemma(name const & R, expr const & e) {
|
|||
auto it1 = g_congr_cache->find(key1);
|
||||
if (it1 != g_congr_cache->end())
|
||||
return it1->second;
|
||||
if (g_heq_based) {
|
||||
/* Check if there is user defined lemma for (R, fn, nargs).
|
||||
Remark: specialization prefix is irrelevan for used defined congruence lemmas. */
|
||||
auto lemma = mk_ext_user_congr_lemma(R, fn, nargs);
|
||||
/* Try automatically generated lemma for equivalence relation over iff/eq */
|
||||
if (!lemma) lemma = mk_relation_congr_lemma(R, fn, nargs);
|
||||
/* Try automatically generated congruence lemma with support for heterogeneous equality. */
|
||||
if (!lemma) lemma = mk_hcongr_lemma(R, fn, nargs);
|
||||
|
||||
if (lemma) {
|
||||
/* succeeded */
|
||||
g_congr_cache->insert(mk_pair(key1, lemma));
|
||||
return lemma;
|
||||
}
|
||||
} else {
|
||||
lean_assert(!g_heq_based);
|
||||
/* When heterogeneous equality support is disabled, we use specialization prefix +
|
||||
congruence lemmas that take care of subsingletons */
|
||||
|
||||
/* Check if (g := fn+specialization prefix) is in the cache */
|
||||
unsigned prefix_sz = get_specialization_prefix_size(fn, nargs);
|
||||
unsigned rest_nargs = nargs - prefix_sz;
|
||||
|
@ -397,6 +466,7 @@ optional<ext_congr_lemma> mk_ext_congr_lemma(name const & R, expr const & e) {
|
|||
g_congr_cache->insert(mk_pair(key2, lemma));
|
||||
return lemma;
|
||||
}
|
||||
}
|
||||
/* cache failure */
|
||||
g_congr_cache->insert(mk_pair(key1, optional<ext_congr_lemma>()));
|
||||
return optional<ext_congr_lemma>();
|
||||
|
@ -496,7 +566,6 @@ int congruence_closure::congr_key_cmp::operator()(congr_key const & k1, congr_ke
|
|||
lean_assert(*it1); lean_assert(*it2);
|
||||
switch (head(*it2)) {
|
||||
case congr_arg_kind::HEq:
|
||||
lean_unreachable();
|
||||
case congr_arg_kind::Eq:
|
||||
lean_assert(head(*it1));
|
||||
r = g_cc->compare_root(*head(*it1), args1[i], args2[i]);
|
||||
|
@ -560,7 +629,6 @@ auto congruence_closure::mk_congr_key(ext_congr_lemma const & lemma, expr const
|
|||
lean_assert(*it1); lean_assert(*it2);
|
||||
switch (head(*it2)) {
|
||||
case congr_arg_kind::HEq:
|
||||
lean_unreachable();
|
||||
case congr_arg_kind::Eq:
|
||||
lean_assert(head(*it1));
|
||||
h = hash(h, get_root(*head(*it1), args[i]).hash());
|
||||
|
@ -601,7 +669,8 @@ void congruence_closure::check_iff_true(congr_key const & k) {
|
|||
if (lhs != rhs)
|
||||
return;
|
||||
// Add e <-> true
|
||||
push_todo(get_iff_name(), e, mk_true(), *g_iff_true_mark);
|
||||
bool heq_proof = false;
|
||||
push_todo(get_iff_name(), e, mk_true(), *g_iff_true_mark, heq_proof);
|
||||
}
|
||||
|
||||
void congruence_closure::add_congruence_table(ext_congr_lemma const & lemma, expr const & e) {
|
||||
|
@ -615,7 +684,8 @@ void congruence_closure::add_congruence_table(ext_congr_lemma const & lemma, exp
|
|||
new_entry.m_cg_root = old_k->m_expr;
|
||||
m_entries.insert(k, new_entry);
|
||||
// 2. Put new equivalence in the TODO queue
|
||||
push_todo(lemma.m_R, e, old_k->m_expr, *g_congr_mark);
|
||||
bool heq_proof = false; // TODO(Leo): fix this
|
||||
push_todo(lemma.m_R, e, old_k->m_expr, *g_congr_mark, heq_proof);
|
||||
} else {
|
||||
m_congruences.insert(k);
|
||||
}
|
||||
|
@ -635,8 +705,11 @@ static bool is_logical_app(expr const & n) {
|
|||
(const_name(fn) == get_ite_name() && is_prop(n)));
|
||||
}
|
||||
|
||||
void congruence_closure::internalize_core(name const & R, expr const & e, bool toplevel, bool to_propagate) {
|
||||
void congruence_closure::internalize_core(name R, expr const & e, bool toplevel, bool to_propagate) {
|
||||
lean_assert(closed(e));
|
||||
if (g_heq_based && R == get_heq_name())
|
||||
R = get_eq_name();
|
||||
|
||||
// we allow metavariables after partitions have been frozen
|
||||
if (has_expr_metavar(e) && !m_froze_partitions)
|
||||
return;
|
||||
|
@ -804,7 +877,8 @@ void congruence_closure::propagate_no_confusion_eq(expr const & e1, expr const &
|
|||
|
||||
/* Remark: If added_prop is not none, then it contains the proposition provided to ::add.
|
||||
We use it here to avoid an unnecessary propagation back to the current_state. */
|
||||
void congruence_closure::add_eqv_step(name const & R, expr e1, expr e2, expr const & H, optional<expr> const & added_prop) {
|
||||
void congruence_closure::add_eqv_step(name const & R, expr e1, expr e2, expr const & H, optional<expr> const & added_prop,
|
||||
bool heq_proof) {
|
||||
auto n1 = m_entries.find(eqc_key(R, e1));
|
||||
auto n2 = m_entries.find(eqc_key(R, e2));
|
||||
if (!n1 || !n2)
|
||||
|
@ -888,6 +962,8 @@ void congruence_closure::add_eqv_step(name const & R, expr e1, expr e2, expr con
|
|||
new_r1.m_next = r2->m_next;
|
||||
new_r2.m_next = r1->m_next;
|
||||
new_r2.m_size += r1->m_size;
|
||||
if (heq_proof)
|
||||
new_r2.m_heq_proofs = true;
|
||||
m_entries.insert(eqc_key(R, e1_root), new_r1);
|
||||
m_entries.insert(eqc_key(R, e2_root), new_r2);
|
||||
lean_assert(check_invariant());
|
||||
|
@ -916,7 +992,8 @@ void congruence_closure::add_eqv_step(name const & R, expr e1, expr e2, expr con
|
|||
bool propagate_back = false;
|
||||
mk_entry(R2, e1, propagate_back);
|
||||
mk_entry(R2, e2, propagate_back);
|
||||
push_todo(R2, e1, e2, *g_lift_mark);
|
||||
bool heq_proof = false;
|
||||
push_todo(R2, e1, e2, *g_lift_mark, heq_proof);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -957,15 +1034,16 @@ void congruence_closure::add_eqv_step(name const & R, expr e1, expr e2, expr con
|
|||
void congruence_closure::process_todo(optional<expr> const & added_prop) {
|
||||
auto & todo = get_todo();
|
||||
while (!todo.empty()) {
|
||||
name R; expr lhs, rhs, H;
|
||||
std::tie(R, lhs, rhs, H) = todo.back();
|
||||
name R; expr lhs, rhs, H; bool heq_proof;
|
||||
std::tie(R, lhs, rhs, H, heq_proof) = todo.back();
|
||||
todo.pop_back();
|
||||
add_eqv_step(R, lhs, rhs, H, added_prop);
|
||||
add_eqv_step(R, lhs, rhs, H, added_prop, heq_proof);
|
||||
}
|
||||
}
|
||||
|
||||
void congruence_closure::add_eqv_core(name const & R, expr const & lhs, expr const & rhs, expr const & H, optional<expr> const & added_prop) {
|
||||
push_todo(R, lhs, rhs, H);
|
||||
void congruence_closure::add_eqv_core(name const & R, expr const & lhs, expr const & rhs, expr const & H,
|
||||
optional<expr> const & added_prop, bool heq_proof) {
|
||||
push_todo(R, lhs, rhs, H, heq_proof);
|
||||
process_todo(added_prop);
|
||||
}
|
||||
|
||||
|
@ -975,9 +1053,15 @@ void congruence_closure::add_eqv(name const & R, expr const & lhs, expr const &
|
|||
flet<congruence_closure *> set_cc(g_cc, this);
|
||||
clear_todo();
|
||||
bool toplevel = false; bool to_propagate = false;
|
||||
internalize_core(R, lhs, toplevel, to_propagate);
|
||||
internalize_core(R, rhs, toplevel, to_propagate);
|
||||
add_eqv_core(R, lhs, rhs, H, none_expr());
|
||||
bool heq_proof = false;
|
||||
name _R = R;
|
||||
if (g_heq_based && R == get_heq_name()) {
|
||||
heq_proof = true;
|
||||
_R = get_eq_name();
|
||||
}
|
||||
internalize_core(_R, lhs, toplevel, to_propagate);
|
||||
internalize_core(_R, rhs, toplevel, to_propagate);
|
||||
add_eqv_core(_R, lhs, rhs, H, none_expr(), heq_proof);
|
||||
}
|
||||
|
||||
void congruence_closure::add(hypothesis_idx hidx) {
|
||||
|
@ -1013,30 +1097,53 @@ void congruence_closure::add(expr const & type, expr const & proof) {
|
|||
if (is_equivalence_relation_app(p, R, lhs, rhs)) {
|
||||
if (is_neg) {
|
||||
bool toplevel = true; bool to_propagate = false;
|
||||
bool heq_proof = false;
|
||||
internalize_core(get_iff_name(), p, toplevel, to_propagate);
|
||||
add_eqv_core(get_iff_name(), p, mk_false(), mk_iff_false_intro(proof), some_expr(type));
|
||||
add_eqv_core(get_iff_name(), p, mk_false(), mk_iff_false_intro(proof), some_expr(type), heq_proof);
|
||||
} else {
|
||||
bool toplevel = false; bool to_propagate = false;
|
||||
bool heq_proof = false;
|
||||
if (g_heq_based && R == get_heq_name()) {
|
||||
/* When heterogeneous equality support is enabled, we
|
||||
store equality and heterogeneous equality are stored in the same equivalence classes. */
|
||||
R = get_eq_name();
|
||||
heq_proof = true;
|
||||
}
|
||||
internalize_core(R, lhs, toplevel, to_propagate);
|
||||
internalize_core(R, rhs, toplevel, to_propagate);
|
||||
add_eqv_core(R, lhs, rhs, proof, some_expr(type));
|
||||
add_eqv_core(R, lhs, rhs, proof, some_expr(type), heq_proof);
|
||||
}
|
||||
} else if (is_prop(p)) {
|
||||
bool toplevel = true; bool to_propagate = false;
|
||||
bool heq_proof = false;
|
||||
internalize_core(get_iff_name(), p, toplevel, to_propagate);
|
||||
if (is_neg) {
|
||||
add_eqv_core(get_iff_name(), p, mk_false(), mk_iff_false_intro(proof), some_expr(type));
|
||||
add_eqv_core(get_iff_name(), p, mk_false(), mk_iff_false_intro(proof), some_expr(type), heq_proof);
|
||||
} else {
|
||||
add_eqv_core(get_iff_name(), p, mk_true(), mk_iff_true_intro(proof), some_expr(type));
|
||||
add_eqv_core(get_iff_name(), p, mk_true(), mk_iff_true_intro(proof), some_expr(type), heq_proof);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
bool congruence_closure::has_heq_proofs(expr const & root) const {
|
||||
lean_assert(m_entries.find(eqc_key(get_eq_name(), root)));
|
||||
lean_assert(m_entries.find(eqc_key(get_eq_name(), root))->m_root == root);
|
||||
return m_entries.find(eqc_key(get_eq_name(), root))->m_heq_proofs;
|
||||
}
|
||||
|
||||
bool congruence_closure::is_eqv(name const & R, expr const & e1, expr const & e2) const {
|
||||
auto n1 = m_entries.find(eqc_key(R, e1));
|
||||
name R_norm = R;
|
||||
if (g_heq_based && R == get_heq_name()) {
|
||||
R_norm = get_eq_name();
|
||||
}
|
||||
auto n1 = m_entries.find(eqc_key(R_norm, e1));
|
||||
if (!n1) return false;
|
||||
auto n2 = m_entries.find(eqc_key(R, e2));
|
||||
auto n2 = m_entries.find(eqc_key(R_norm, e2));
|
||||
if (!n2) return false;
|
||||
/* Remark: this method assumes that is_eqv is invoked with type correct parameters.
|
||||
An eq class may contain equality and heterogeneous equality proofs when g_heq_based
|
||||
is enabled. When this happens, the answer is correct only if e1 and e2 have the same type.
|
||||
*/
|
||||
return n1->m_root == n2->m_root;
|
||||
}
|
||||
|
||||
|
@ -1168,11 +1275,20 @@ expr congruence_closure::mk_proof(name const & R, expr const & lhs, expr const &
|
|||
}
|
||||
}
|
||||
|
||||
static expr flip_proof(name const & R, expr const & H, bool flipped) {
|
||||
if (!flipped || H == *g_congr_mark || H == *g_iff_true_mark || H == *g_lift_mark) {
|
||||
static expr flip_proof(name const & R, expr const & H, bool flipped, bool has_heq_proofs) {
|
||||
if (H == *g_congr_mark || H == *g_iff_true_mark || H == *g_lift_mark) {
|
||||
return H;
|
||||
} else {
|
||||
return get_app_builder().mk_symm(R, H);
|
||||
auto & b = get_app_builder();
|
||||
expr new_H = H;
|
||||
if (has_heq_proofs && is_eq(relaxed_whnf(infer_type(new_H)))) {
|
||||
new_H = b.mk_heq_of_eq(new_H);
|
||||
}
|
||||
if (!flipped) {
|
||||
return new_H;
|
||||
} else {
|
||||
return b.mk_symm(R, new_H);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -1182,26 +1298,33 @@ static expr mk_trans(name const & R, optional<expr> const & H1, expr const & H2)
|
|||
|
||||
optional<expr> congruence_closure::get_eqv_proof(name const & R, expr const & e1, expr const & e2) const {
|
||||
app_builder & b = get_app_builder();
|
||||
name R_key = R; // We use R_key to access the equivalence class data
|
||||
if (g_heq_based && R == get_heq_name()) {
|
||||
R_key = get_eq_name();
|
||||
}
|
||||
if (has_expr_metavar(e1) || has_expr_metavar(e2)) return none_expr();
|
||||
if (is_def_eq(e1, e2))
|
||||
return some_expr(b.lift_from_eq(R, b.mk_eq_refl(e1)));
|
||||
auto n1 = m_entries.find(eqc_key(R, e1));
|
||||
auto n1 = m_entries.find(eqc_key(R_key, e1));
|
||||
if (!n1) return none_expr();
|
||||
auto n2 = m_entries.find(eqc_key(R, e2));
|
||||
auto n2 = m_entries.find(eqc_key(R_key, e2));
|
||||
if (!n2) return none_expr();
|
||||
if (n1->m_root != n2->m_root) return none_expr();
|
||||
bool heq_proofs = R_key == get_eq_name() && has_heq_proofs(n1->m_root);
|
||||
// R_trans is the relation we use to build the transitivity proofs
|
||||
name R_trans = heq_proofs ? get_heq_name() : R_key;
|
||||
// 1. Retrieve "path" from e1 to root
|
||||
buffer<expr> path1, Hs1;
|
||||
rb_tree<expr, expr_quick_cmp> visited;
|
||||
expr it1 = e1;
|
||||
while (true) {
|
||||
visited.insert(it1);
|
||||
auto it1_n = m_entries.find(eqc_key(R, it1));
|
||||
auto it1_n = m_entries.find(eqc_key(R_key, it1));
|
||||
lean_assert(it1_n);
|
||||
if (!it1_n->m_target)
|
||||
break;
|
||||
path1.push_back(*it1_n->m_target);
|
||||
Hs1.push_back(flip_proof(R, *it1_n->m_proof, it1_n->m_flipped));
|
||||
Hs1.push_back(flip_proof(R_trans, *it1_n->m_proof, it1_n->m_flipped, heq_proofs));
|
||||
it1 = *it1_n->m_target;
|
||||
}
|
||||
lean_assert(it1 == n1->m_root);
|
||||
|
@ -1212,11 +1335,11 @@ optional<expr> congruence_closure::get_eqv_proof(name const & R, expr const & e1
|
|||
while (true) {
|
||||
if (visited.contains(it2))
|
||||
break; // found common
|
||||
auto it2_n = m_entries.find(eqc_key(R, it2));
|
||||
auto it2_n = m_entries.find(eqc_key(R_key, it2));
|
||||
lean_assert(it2_n);
|
||||
lean_assert(it2_n->m_target);
|
||||
path2.push_back(it2);
|
||||
Hs2.push_back(flip_proof(R, *it2_n->m_proof, !it2_n->m_flipped));
|
||||
Hs2.push_back(flip_proof(R_trans, *it2_n->m_proof, !it2_n->m_flipped, heq_proofs));
|
||||
it2 = *it2_n->m_target;
|
||||
}
|
||||
// it2 is the common element...
|
||||
|
@ -1238,16 +1361,20 @@ optional<expr> congruence_closure::get_eqv_proof(name const & R, expr const & e1
|
|||
optional<expr> pr;
|
||||
expr lhs = e1;
|
||||
for (unsigned i = 0; i < path1.size(); i++) {
|
||||
pr = mk_trans(R, pr, mk_proof(R, lhs, path1[i], Hs1[i]));
|
||||
pr = mk_trans(R_trans, pr, mk_proof(R, lhs, path1[i], Hs1[i]));
|
||||
lhs = path1[i];
|
||||
}
|
||||
unsigned i = Hs2.size();
|
||||
while (i > 0) {
|
||||
--i;
|
||||
pr = mk_trans(R, pr, mk_proof(R, lhs, path2[i], Hs2[i]));
|
||||
pr = mk_trans(R_trans, pr, mk_proof(R, lhs, path2[i], Hs2[i]));
|
||||
lhs = path2[i];
|
||||
}
|
||||
lean_assert(pr);
|
||||
if (heq_proofs && R == get_eq_name())
|
||||
pr = b.mk_eq_of_heq(*pr);
|
||||
else if (!heq_proofs && R == get_heq_name())
|
||||
pr = b.mk_heq_of_eq(*pr);
|
||||
return pr;
|
||||
}
|
||||
|
||||
|
|
|
@ -48,6 +48,10 @@ class congruence_closure {
|
|||
unsigned m_to_propagate:1; // must be propagated back to state when in equivalence class containing true/false
|
||||
unsigned m_interpreted:1; // true if the node should be viewed as an abstract value
|
||||
unsigned m_constructor:1; // true if head symbol is a constructor
|
||||
/* m_heq_proofs == true iff some proofs in the equivalence class are based on heterogeneous equality.
|
||||
This flag is only used when option blast.cc.heq is set to true.
|
||||
Moreover, we represent equality and heterogeneous equality in a single equivalence class. */
|
||||
unsigned m_heq_proofs:1;
|
||||
unsigned m_size; // number of elements in the equivalence class, it is meaningless if 'e' != m_root
|
||||
unsigned m_mt;
|
||||
// The field m_mt is used to implement the mod-time optimization introduce by the Simplify theorem prover.
|
||||
|
@ -117,7 +121,7 @@ class congruence_closure {
|
|||
void update_non_eq_relations(name const & R);
|
||||
|
||||
void register_to_propagate(expr const & e);
|
||||
void internalize_core(name const & R, expr const & e, bool toplevel, bool to_propagate);
|
||||
void internalize_core(name R, expr const & e, bool toplevel, bool to_propagate);
|
||||
void process_todo(optional<expr> const & added_prop);
|
||||
|
||||
int compare_symm(name const & R, expr lhs1, expr rhs1, expr lhs2, expr rhs2) const;
|
||||
|
@ -138,14 +142,16 @@ class congruence_closure {
|
|||
void update_mt(name const & R, expr const & e);
|
||||
expr mk_iff_false_intro(expr const & proof);
|
||||
expr mk_iff_true_intro(expr const & proof);
|
||||
void add_eqv_step(name const & R, expr e1, expr e2, expr const & H, optional<expr> const & added_prop);
|
||||
void add_eqv_core(name const & R, expr const & lhs, expr const & rhs, expr const & H, optional<expr> const & added_prop);
|
||||
void add_eqv_step(name const & R, expr e1, expr e2, expr const & H, optional<expr> const & added_prop, bool heq_proof);
|
||||
void add_eqv_core(name const & R, expr const & lhs, expr const & rhs, expr const & H, optional<expr> const & added_prop, bool heq_proof);
|
||||
void propagate_no_confusion_eq(expr const & e1, expr const & e2);
|
||||
|
||||
expr mk_congr_proof_core(name const & R, expr const & lhs, expr const & rhs) const;
|
||||
expr mk_congr_proof(name const & R, expr const & lhs, expr const & rhs) const;
|
||||
expr mk_proof(name const & R, expr const & lhs, expr const & rhs, expr const & H) const;
|
||||
|
||||
bool has_heq_proofs(expr const & root) const;
|
||||
|
||||
void trace_eqc(name const & R, expr const & e) const;
|
||||
public:
|
||||
void initialize();
|
||||
|
@ -255,8 +261,10 @@ struct ext_congr_lemma {
|
|||
/* If m_fixed_fun is false, then we build equivalences for functions, and use generic congr lemma, and ignore m_congr_lemma.
|
||||
That is, even the function can be treated as an Eq argument. */
|
||||
unsigned m_fixed_fun:1;
|
||||
/* If m_uses_heq is true, then lemma is based on heterogeneous equality. */
|
||||
unsigned m_heq_based:1;
|
||||
ext_congr_lemma(congr_lemma const & H);
|
||||
ext_congr_lemma(name const & R, congr_lemma const & H, bool lift_needed);
|
||||
ext_congr_lemma(name const & R, congr_lemma const & H, bool lift_needed, bool heq_based);
|
||||
ext_congr_lemma(name const & R, congr_lemma const & H, list<optional<name>> const & rel_names, bool lift_needed);
|
||||
|
||||
name const & get_relation() const { return m_R; }
|
||||
|
|
32
tests/lean/run/blast_cc_heq1.lean
Normal file
32
tests/lean/run/blast_cc_heq1.lean
Normal file
|
@ -0,0 +1,32 @@
|
|||
set_option blast.strategy "cc"
|
||||
set_option blast.cc.heq true -- make sure heterogeneous congruence lemmas are enabled
|
||||
|
||||
example (a b c : Prop) : a = b → b = c → (a ↔ c) :=
|
||||
by blast
|
||||
|
||||
example (a b c : Prop) : a = b → b == c → (a ↔ c) :=
|
||||
by blast
|
||||
|
||||
example (a b c : nat) : a == b → b = c → a == c :=
|
||||
by blast
|
||||
|
||||
example (a b c : nat) : a == b → b = c → a = c :=
|
||||
by blast
|
||||
|
||||
example (a b c d : nat) : a == b → b == c → c == d → a = d :=
|
||||
by blast
|
||||
|
||||
example (a b c d : nat) : a == b → b = c → c == d → a = d :=
|
||||
by blast
|
||||
|
||||
example (a b c : Prop) : a = b → b = c → (a ↔ c) :=
|
||||
by blast
|
||||
|
||||
example (a b c : Prop) : a == b → b = c → (a ↔ c) :=
|
||||
by blast
|
||||
|
||||
example (a b c d : Prop) : a == b → b == c → c == d → (a ↔ d) :=
|
||||
by blast
|
||||
|
||||
definition foo (a b c d : Prop) : a == b → b = c → c == d → (a ↔ d) :=
|
||||
by blast
|
11
tests/lean/run/blast_cc_heq2.lean
Normal file
11
tests/lean/run/blast_cc_heq2.lean
Normal file
|
@ -0,0 +1,11 @@
|
|||
set_option blast.strategy "cc"
|
||||
set_option blast.cc.heq true -- make sure heterogeneous congruence lemmas are enabled
|
||||
|
||||
example (a b c : nat) (f : nat → nat) : a == b → b = c → f a == f c :=
|
||||
by blast
|
||||
|
||||
example (a b c : nat) (f : nat → nat) : a == b → b = c → f a = f c :=
|
||||
by blast
|
||||
|
||||
example (a b c d : nat) (f : nat → nat) : a == b → b = c → c == f d → f a = f (f d) :=
|
||||
by blast
|
Loading…
Reference in a new issue