fix(library/unifier): too much reduction

Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
This commit is contained in:
Leonardo de Moura 2014-08-21 21:37:51 -07:00
parent c4cc837e34
commit 937c465685
3 changed files with 90 additions and 6 deletions

View file

@ -95,7 +95,6 @@ class type_checker {
friend class converter; // allow converter to access the following methods
name mk_fresh_name() { return m_gen.next(); }
optional<expr> expand_macro(expr const & m);
pair<expr, expr> open_binding_body(expr const & e);
pair<expr, constraint_seq> ensure_sort_core(expr e, expr const & s);
pair<expr, constraint_seq> ensure_pi_core(expr e, expr const & s);
@ -199,6 +198,8 @@ public:
cs = r.second + cs;
return r.first;
}
optional<expr> expand_macro(expr const & m);
};
typedef std::shared_ptr<type_checker> type_checker_ref;

View file

@ -1697,6 +1697,19 @@ struct unifier_fn {
return std::all_of(margs.begin(), margs.end(), [&](expr const & e) { return is_local(e); });
}
optional<expr> expand_rhs(expr const & rhs, bool relax) {
buffer<expr> args;
expr const & f = get_app_rev_args(rhs, args);
lean_assert(!is_local(f) && !is_constant(f) && !is_var(f) && !is_metavar(f));
if (is_lambda(f)) {
return some_expr(apply_beta(f, args.size(), args.data()));
} else if (is_macro(f)) {
return m_tc[relax]->expand_macro(rhs);
} else {
return none_expr();
}
}
/** \brief Process a flex rigid constraint */
bool process_flex_rigid(expr lhs, expr const & rhs, justification const & j, bool relax) {
lean_assert(is_meta(lhs));
@ -1704,12 +1717,12 @@ struct unifier_fn {
if (is_app(rhs)) {
expr const & f = get_app_fn(rhs);
if (!is_local(f) && !is_constant(f)) {
constraint_seq cs;
expr new_rhs = whnf(rhs, relax, cs);
lean_assert(new_rhs != rhs);
if (!process_constraints(cs, j))
if (auto new_rhs = expand_rhs(rhs, relax)) {
lean_assert(*new_rhs != rhs);
return is_def_eq(lhs, *new_rhs, j, relax);
} else {
return false;
return is_def_eq(lhs, new_rhs, j, relax);
}
}
}

View file

@ -0,0 +1,70 @@
-- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
-- Released under Apache 2.0 license as described in the file LICENSE.
-- Author: Leonardo de Moura, Jeremy Avigad
import logic.connectives.prop logic.classes.inhabited logic.classes.decidable
using inhabited decidable
namespace sum
-- TODO: take this outside the namespace when the inductive package handles it better
inductive sum (A B : Type) : Type :=
| inl : A → sum A B
| inr : B → sum A B
infixr `+`:25 := sum
abbreviation rec_on {A B : Type} {C : (A + B) → Type} (s : A + B)
(H1 : ∀a : A, C (inl B a)) (H2 : ∀b : B, C (inr A b)) : C s :=
sum_rec H1 H2 s
theorem inl_inj {A B : Type} {a1 a2 : A} (H : inl B a1 = inl B a2) : a1 = a2 :=
let f := λs, rec_on s (λa, a1 = a) (λb, false) in
have H1 : f (inl B a1), from rfl,
have H2 : f (inl B a2), from subst H H1,
H2
abbreviation cases_on {A B : Type} {P : (A + B) → Prop} (s : A + B)
(H1 : ∀a : A, P (inl B a)) (H2 : ∀b : B, P (inr A b)) : P s :=
sum_rec H1 H2 s
theorem inl_neq_inr {A B : Type} {a : A} {b : B} (H : inl B a = inr A b) : false :=
let f := λs, rec_on s (λa', a = a') (λb, false) in
have H1 : f (inl B a), from rfl,
have H2 : f (inr A b), from subst H H1,
H2
theorem inr_inj {A B : Type} {b1 b2 : B} (H : inr A b1 = inr A b2) : b1 = b2 :=
let f := λs, rec_on s (λa, false) (λb, b1 = b) in
have H1 : f (inr A b1), from rfl,
have H2 : f (inr A b2), from subst H H1,
H2
theorem sum_inhabited_left [instance] {A B : Type} (H : inhabited A) : inhabited (A + B) :=
inhabited_mk (inl B (default A))
theorem sum_inhabited_right [instance] {A B : Type} (H : inhabited B) : inhabited (A + B) :=
inhabited_mk (inr A (default B))
theorem sum_eq_decidable [instance] {A B : Type} (s1 s2 : A + B)
(H1 : ∀a1 a2, decidable (inl B a1 = inl B a2))
(H2 : ∀b1 b2, decidable (inr A b1 = inr A b2)) : decidable (s1 = s2) :=
rec_on s1
(take a1, show decidable (inl B a1 = s2), from
rec_on s2
(take a2, show decidable (inl B a1 = inl B a2), from H1 a1 a2)
(take b2,
have H3 : (inl B a1 = inr A b2) ↔ false,
from iff_intro inl_neq_inr (assume H4, false_elim _ H4),
show decidable (inl B a1 = inr A b2), from decidable_iff_equiv _ (iff_symm H3)))
(take b1, show decidable (inr A b1 = s2), from
rec_on s2
(take a2,
have H3 : (inr A b1 = inl B a2) ↔ false,
from iff_intro (assume H4, inl_neq_inr (symm H4)) (assume H4, false_elim _ H4),
show decidable (inr A b1 = inl B a2), from decidable_iff_equiv _ (iff_symm H3))
(take b2, show decidable (inr A b1 = inr A b2), from H2 b1 b2))
end sum