feat(library/algebra/ordered_field): prove more theorems

This commit is contained in:
Rob Lewis 2015-03-19 11:53:04 -04:00 committed by Leonardo de Moura
parent a1028922bd
commit 94b9aaea45
2 changed files with 86 additions and 10 deletions

View file

@ -62,6 +62,8 @@ section division_ring
theorem div_self (H : a ≠ 0) : a / a = 1 := mul_inv_cancel H theorem div_self (H : a ≠ 0) : a / a = 1 := mul_inv_cancel H
theorem one_div_one : 1 / 1 = 1 := div_self (ne.symm zero_ne_one)
theorem mul_div_assoc : (a * b) / c = a * (b / c) := !mul.assoc theorem mul_div_assoc : (a * b) / c = a * (b / c) := !mul.assoc
theorem one_div_ne_zero (H : a ≠ 0) : 1 / a ≠ 0 := theorem one_div_ne_zero (H : a ≠ 0) : 1 / a ≠ 0 :=

View file

@ -26,13 +26,9 @@ section linear_ordered_field
have nhc : -c ≥ 0, from neg_nonneg_of_nonpos Hc, have nhc : -c ≥ 0, from neg_nonneg_of_nonpos Hc,
have H2 : -(c * b) < -(c * a), from (iff.mp' (neg_lt_neg_iff_lt _ _) H), have H2 : -(c * b) < -(c * a), from (iff.mp' (neg_lt_neg_iff_lt _ _) H),
have H3 : (-c) * b < (-c) * a, from (calc have H3 : (-c) * b < (-c) * a, from (calc
(-c) * b = (-1 * c) * b : neg_eq_neg_one_mul (-c) * b = - (c * b) : neg_mul_eq_neg_mul
... = -1 * (c * b) : mul.assoc
... = - (c * b) : neg_eq_neg_one_mul
... < -(c * a) : H2 ... < -(c * a) : H2
... = -1 * (c * a) : neg_eq_neg_one_mul ... = (-c) * a : neg_mul_eq_neg_mul
... = (-1 * c) * a : mul.assoc
... = (-c) * a : neg_eq_neg_one_mul
), ),
lt_of_mul_lt_mul_left H3 nhc lt_of_mul_lt_mul_left H3 nhc
@ -92,6 +88,12 @@ section linear_ordered_field
... ≤ a * (1 / b) : mul_le_mul_of_nonneg_right H (le_of_lt Hbinv) ... ≤ a * (1 / b) : mul_le_mul_of_nonneg_right H (le_of_lt Hbinv)
... = a / b : div_eq_mul_one_div) ... = a / b : div_eq_mul_one_div)
theorem le_of_one_le_div (Hb : b > 0) (H : 1 ≤ a / b) : b ≤ a :=
(iff.mp (one_le_div_iff_le Hb)) H
theorem one_le_div_of_le (Hb : b > 0) (H : b ≤ a) : 1 ≤ a / b :=
(iff.mp' (one_le_div_iff_le Hb)) H
theorem one_lt_div_iff_lt (Hb : b > 0) : 1 < a / b ↔ b < a := theorem one_lt_div_iff_lt (Hb : b > 0) : 1 < a / b ↔ b < a :=
have Hb' : b ≠ 0, from ne.symm (ne_of_lt Hb), have Hb' : b ≠ 0, from ne.symm (ne_of_lt Hb),
iff.intro iff.intro
@ -106,6 +108,12 @@ section linear_ordered_field
... < a * (1 / b) : mul_lt_mul_of_pos_right H Hbinv ... < a * (1 / b) : mul_lt_mul_of_pos_right H Hbinv
... = a / b : div_eq_mul_one_div) ... = a / b : div_eq_mul_one_div)
theorem lt_of_one_lt_div (Hb : b > 0) (H : 1 < a / b) : b < a :=
(iff.mp (one_lt_div_iff_lt Hb)) H
theorem one_lt_div_of_lt (Hb : b > 0) (H : b < a) : 1 < a / b :=
(iff.mp' (one_lt_div_iff_lt Hb)) H
-- why is mul_le_mul under ordered_ring namespace? -- why is mul_le_mul under ordered_ring namespace?
theorem le_of_div_le (H : 0 < a) (Hl : 1 / a ≤ 1 / b) : b ≤ a := theorem le_of_div_le (H : 0 < a) (Hl : 1 / a ≤ 1 / b) : b ≤ a :=
have Hb : 0 < b, from pos_of_div_pos (calc have Hb : 0 < b, from pos_of_div_pos (calc
@ -116,7 +124,7 @@ section linear_ordered_field
... = a * (1 / a) : div_eq_mul_one_div ... = a * (1 / a) : div_eq_mul_one_div
... ≤ a * (1 / b) : ordered_ring.mul_le_mul_of_nonneg_left Hl (le_of_lt H) ... ≤ a * (1 / b) : ordered_ring.mul_le_mul_of_nonneg_left Hl (le_of_lt H)
... = a / b : div_eq_mul_one_div ... = a / b : div_eq_mul_one_div
), iff.mp (one_le_div_iff_le Hb) H' ), le_of_one_le_div Hb H'
theorem lt_of_div_lt (H : 0 < a) (Hl : 1 / a < 1 / b) : b < a := theorem lt_of_div_lt (H : 0 < a) (Hl : 1 / a < 1 / b) : b < a :=
@ -128,7 +136,7 @@ section linear_ordered_field
... = a * (1 / a) : div_eq_mul_one_div ... = a * (1 / a) : div_eq_mul_one_div
... < a * (1 / b) : mul_lt_mul_of_pos_left Hl H ... < a * (1 / b) : mul_lt_mul_of_pos_left Hl H
... = a / b : div_eq_mul_one_div), ... = a / b : div_eq_mul_one_div),
iff.mp (one_lt_div_iff_lt Hb) H lt_of_one_lt_div Hb H
theorem le_of_div_le_neg (H : b < 0) (Hl : 1 / a ≤ 1 / b) : b ≤ a := theorem le_of_div_le_neg (H : b < 0) (Hl : 1 / a ≤ 1 / b) : b ≤ a :=
have Ha : a ≠ 0, from ne_of_lt (neg_of_div_neg (calc have Ha : a ≠ 0, from ne_of_lt (neg_of_div_neg (calc
@ -142,7 +150,7 @@ section linear_ordered_field
... = 1 / -a : one_div_neg_eq_neg_one_div Ha, ... = 1 / -a : one_div_neg_eq_neg_one_div Ha,
le_of_neg_le_neg (le_of_div_le H' Hl'') le_of_neg_le_neg (le_of_div_le H' Hl'')
theorem lt_of_div_lt_pos (H : b < 0) (Hl : 1 / a < 1 / b) : b < a := theorem lt_of_div_lt_neg (H : b < 0) (Hl : 1 / a < 1 / b) : b < a :=
have H1 : b ≤ a, from le_of_div_le_neg H (le_of_lt Hl), have H1 : b ≤ a, from le_of_div_le_neg H (le_of_lt Hl),
have Hn : b ≠ a, from have Hn : b ≠ a, from
(assume Hn' : b = a, (assume Hn' : b = a,
@ -150,6 +158,72 @@ section linear_ordered_field
absurd Hl' (ne_of_lt Hl)), absurd Hl' (ne_of_lt Hl)),
lt_of_le_of_ne H1 Hn lt_of_le_of_ne H1 Hn
theorem div_lt_div_of_lt (Ha : 0 < a) (H : a < b) : 1 / b < 1 / a :=
lt_of_not_le
(assume H',
absurd H (not_lt_of_le (le_of_div_le Ha H')))
theorem div_le_div_of_le (Ha : 0 < a) (H : a ≤ b) : 1 / b ≤ 1 / a :=
le_of_not_lt
(assume H',
absurd H (not_le_of_lt (lt_of_div_lt Ha H')))
theorem div_lt_div_of_lt_neg (Hb : b < 0) (H : a < b) : 1 / b < 1 / a :=
lt_of_not_le
(assume H',
absurd H (not_lt_of_le (le_of_div_le_neg Hb H')))
theorem div_le_div_of_le_neg (Hb : b < 0) (H : a ≤ b) : 1 / b ≤ 1 / a :=
le_of_not_lt
(assume H',
absurd H (not_le_of_lt (lt_of_div_lt_neg Hb H')))
-- belongs in ordered ring?
theorem zero_gt_neg_one : -1 < 0 :=
neg_zero ▸ (neg_lt_neg zero_lt_one)
theorem exists_lt : ∃ x, x < a :=
have H : a - 1 < a, from add_lt_of_le_of_neg (le.refl _) zero_gt_neg_one,
exists.intro _ H
theorem exists_gt : ∃ x, x > a :=
have H : a + 1 > a, from lt_add_of_le_of_pos (le.refl _) zero_lt_one,
exists.intro _ H
theorem one_lt_div (H1 : 0 < a) (H2 : a < 1) : 1 < 1 / a :=
one_div_one ▸ div_lt_div_of_lt H1 H2
theorem one_le_div (H1 : 0 < a) (H2 : a ≤ 1) : 1 ≤ 1 / a :=
one_div_one ▸ div_le_div_of_le H1 H2
theorem neg_one_lt_div_neg (H1 : a < 0) (H2 : -1 < a) : 1 / a < -1 :=
one_div_neg_one_eq_neg_one ▸ div_lt_div_of_lt_neg H1 H2
theorem neg_one_le_div_neg (H1 : a < 0) (H2 : -1 ≤ a) : 1 / a ≤ -1 :=
one_div_neg_one_eq_neg_one ▸ div_le_div_of_le_neg H1 H2
theorem mul_le_of_le_div (Hc : 0 < c) (H : a ≤ b / c) : a * c ≤ b :=
div_mul_cancel (ne.symm (ne_of_lt Hc)) ▸ mul_le_mul_of_nonneg_right H (le_of_lt Hc)
theorem le_div_of_mul_le (Hc : 0 < c) (H : a * c ≤ b) : a ≤ b / c :=
calc
a = a * 1 : mul_one
... = a * (c * (1 / c)) : mul_one_div_cancel (ne.symm (ne_of_lt Hc))
... = a * c * (1 / c) : mul.assoc
... ≤ b * (1 / c) : mul_le_mul_of_nonneg_right H (le_of_lt (div_pos_of_pos Hc))
... = b / c : div_eq_mul_one_div
theorem mul_lt_of_lt_div (Hc : 0 < c) (H : a < b / c) : a * c < b :=
div_mul_cancel (ne.symm (ne_of_lt Hc)) ▸ mul_lt_mul_of_pos_right H Hc
theorem lt_div_of_mul_lt (Hc : 0 < c) (H : a * c < b) : a < b / c :=
calc
a = a * 1 : mul_one
... = a * (c * (1 / c)) : mul_one_div_cancel (ne.symm (ne_of_lt Hc))
... = a * c * (1 / c) : mul.assoc
... < b * (1 / c) : mul_lt_mul_of_pos_right H (div_pos_of_pos Hc)
... = b / c : div_eq_mul_one_div
end linear_ordered_field end linear_ordered_field
structure discrete_linear_ordered_field [class] (A : Type) extends linear_ordered_field A, structure discrete_linear_ordered_field [class] (A : Type) extends linear_ordered_field A,
@ -174,7 +248,7 @@ section discrete_linear_ordered_field
definition discrete_linear_ordered_field.to_discrete_field [instance] [reducible] [coercion] definition discrete_linear_ordered_field.to_discrete_field [instance] [reducible] [coercion]
[s : discrete_linear_ordered_field A] : discrete_field A := [s : discrete_linear_ordered_field A] : discrete_field A :=
⦃ discrete_field, s, decidable_equality := @dec_eq_of_dec_lt A s ⦃ discrete_field, s, decidable_equality := dec_eq_of_dec_lt⦄