feat(library/algebra/ring): simplify ring theorems using rewrite tactic
This commit is contained in:
parent
0ae6e2b3e4
commit
96c161a659
1 changed files with 4 additions and 7 deletions
|
@ -133,12 +133,8 @@ section comm_semiring
|
||||||
dvd.elim dvd_cd
|
dvd.elim dvd_cd
|
||||||
(take f, assume Hcfd : d = c * f,
|
(take f, assume Hcfd : d = c * f,
|
||||||
dvd.intro
|
dvd.intro
|
||||||
(calc
|
(show a * c * (e * f) = b * d,
|
||||||
a * c * (e * f) = a * (c * (e * f)) : mul.assoc
|
by rewrite [mul.assoc, {c*_}mul.left_comm, -mul.assoc, Haeb, Hcfd])))
|
||||||
... = a * (e * (c * f)) : mul.left_comm
|
|
||||||
... = a * e * (c * f) : (!mul.assoc)⁻¹
|
|
||||||
... = b * (c * f) : Haeb
|
|
||||||
... = b * d : Hcfd)))
|
|
||||||
|
|
||||||
theorem dvd_of_mul_right_dvd {a b c : A} (H : a * b | c) : a | c :=
|
theorem dvd_of_mul_right_dvd {a b c : A} (H : a * b | c) : a | c :=
|
||||||
dvd.elim H (take d, assume Habdc : c = a * b * d, dvd.intro (!mul.assoc⁻¹ ⬝ Habdc⁻¹))
|
dvd.elim H (take d, assume Habdc : c = a * b * d, dvd.intro (!mul.assoc⁻¹ ⬝ Habdc⁻¹))
|
||||||
|
@ -151,7 +147,8 @@ section comm_semiring
|
||||||
(take d, assume Hadb : b = a * d,
|
(take d, assume Hadb : b = a * d,
|
||||||
dvd.elim Hac
|
dvd.elim Hac
|
||||||
(take e, assume Haec : c = a * e,
|
(take e, assume Haec : c = a * e,
|
||||||
dvd.intro (show a * (d + e) = b + c, from Hadb⁻¹ ▸ Haec⁻¹ ▸ left_distrib a d e)))
|
dvd.intro (show a * (d + e) = b + c,
|
||||||
|
by rewrite [left_distrib, -Hadb, -Haec])))
|
||||||
end comm_semiring
|
end comm_semiring
|
||||||
|
|
||||||
/- ring -/
|
/- ring -/
|
||||||
|
|
Loading…
Reference in a new issue