feat(library): minor cleanup, replace 'refl _' with 'rfl', define equivalence relation for sets
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
This commit is contained in:
parent
c11fd6b0d2
commit
9715d06f4a
5 changed files with 77 additions and 40 deletions
|
@ -25,10 +25,10 @@ theorem dichotomy (b : bool) : b = ff ∨ b = tt :=
|
|||
cases_on b (or_inl (refl ff)) (or_inr (refl tt))
|
||||
|
||||
theorem cond_ff {A : Type} (t e : A) : cond ff t e = e :=
|
||||
refl (cond ff t e)
|
||||
rfl
|
||||
|
||||
theorem cond_tt {A : Type} (t e : A) : cond tt t e = t :=
|
||||
refl (cond tt t e)
|
||||
rfl
|
||||
|
||||
theorem ff_ne_tt : ¬ ff = tt :=
|
||||
assume H : ff = tt, absurd
|
||||
|
@ -47,7 +47,7 @@ definition bor (a b : bool) :=
|
|||
bool_rec (bool_rec ff tt b) tt a
|
||||
|
||||
theorem bor_tt_left (a : bool) : bor tt a = tt :=
|
||||
refl (bor tt a)
|
||||
rfl
|
||||
|
||||
infixl `||` := bor
|
||||
|
||||
|
@ -90,7 +90,7 @@ bool_rec ff (bool_rec ff tt b) a
|
|||
infixl `&&` := band
|
||||
|
||||
theorem band_ff_left (a : bool) : ff && a = ff :=
|
||||
refl (ff && a)
|
||||
rfl
|
||||
|
||||
theorem band_tt_left (a : bool) : tt && a = a :=
|
||||
cases_on a (refl (tt && ff)) (refl (tt && tt))
|
||||
|
@ -137,8 +137,10 @@ notation `!` x:max := bnot x
|
|||
theorem bnot_bnot (a : bool) : !!a = a :=
|
||||
cases_on a (refl (!!ff)) (refl (!!tt))
|
||||
|
||||
theorem bnot_false : !ff = tt := refl _
|
||||
theorem bnot_false : !ff = tt :=
|
||||
rfl
|
||||
|
||||
theorem bnot_true : !tt = ff := refl _
|
||||
theorem bnot_true : !tt = ff :=
|
||||
rfl
|
||||
|
||||
end bool
|
||||
|
|
|
@ -42,11 +42,11 @@ inhabited_mk none
|
|||
theorem decidable_eq [instance] {A : Type} {H : ∀a₁ a₂ : A, decidable (a₁ = a₂)}
|
||||
(o₁ o₂ : option A) : decidable (o₁ = o₂) :=
|
||||
rec_on o₁
|
||||
(rec_on o₂ (inl (refl _)) (take a₂, (inr (none_ne_some a₂))))
|
||||
(rec_on o₂ (inl rfl) (take a₂, (inr (none_ne_some a₂))))
|
||||
(take a₁ : A, rec_on o₂
|
||||
(inr (ne_symm (none_ne_some a₁)))
|
||||
(take a₂ : A, decidable.rec_on (H a₁ a₂)
|
||||
(assume Heq : a₁ = a₂, inl (Heq ▸ refl _))
|
||||
(assume Heq : a₁ = a₂, inl (Heq ▸ rfl))
|
||||
(assume Hne : a₁ ≠ a₂, inr (assume Hn : some a₁ = some a₂, absurd (some_inj Hn) Hne))))
|
||||
|
||||
end option
|
||||
|
|
|
@ -28,8 +28,11 @@ section
|
|||
abbreviation pr1 (p : prod A B) := prod_rec (λ x y, x) p
|
||||
abbreviation pr2 (p : prod A B) := prod_rec (λ x y, y) p
|
||||
|
||||
theorem pr1_pair (a : A) (b : B) : pr1 (a, b) = a := refl a
|
||||
theorem pr2_pair (a : A) (b : B) : pr2 (a, b) = b := refl b
|
||||
theorem pr1_pair (a : A) (b : B) : pr1 (a, b) = a :=
|
||||
rfl
|
||||
|
||||
theorem pr2_pair (a : A) (b : B) : pr2 (a, b) = b :=
|
||||
rfl
|
||||
|
||||
-- TODO: remove prefix when we can protect it
|
||||
theorem pair_destruct {P : A × B → Prop} (p : A × B) (H : ∀a b, P (a, b)) : P p :=
|
||||
|
@ -39,25 +42,22 @@ section
|
|||
pair_destruct p (λx y, refl (x, y))
|
||||
|
||||
theorem pair_eq {a1 a2 : A} {b1 b2 : B} (H1 : a1 = a2) (H2 : b1 = b2) : (a1, b1) = (a2, b2) :=
|
||||
subst H1 (subst H2 (refl _))
|
||||
subst H1 (subst H2 rfl)
|
||||
|
||||
theorem prod_eq {p1 p2 : prod A B} : ∀ (H1 : pr1 p1 = pr1 p2) (H2 : pr2 p1 = pr2 p2), p1 = p2 :=
|
||||
pair_destruct p1 (take a1 b1, pair_destruct p2 (take a2 b2 H1 H2, pair_eq H1 H2))
|
||||
|
||||
theorem prod_inhabited (H1 : inhabited A) (H2 : inhabited B) : inhabited (prod A B) :=
|
||||
theorem prod_inhabited [instance] (H1 : inhabited A) (H2 : inhabited B) : inhabited (prod A B) :=
|
||||
inhabited_destruct H1 (λa, inhabited_destruct H2 (λb, inhabited_mk (pair a b)))
|
||||
|
||||
theorem prod_eq_decidable (u v : A × B) (H1 : decidable (pr1 u = pr1 v))
|
||||
theorem prod_eq_decidable [instance] (u v : A × B) (H1 : decidable (pr1 u = pr1 v))
|
||||
(H2 : decidable (pr2 u = pr2 v)) : decidable (u = v) :=
|
||||
have H3 : u = v ↔ (pr1 u = pr1 v) ∧ (pr2 u = pr2 v), from
|
||||
iff_intro
|
||||
(assume H, subst H (and_intro (refl _) (refl _)))
|
||||
(assume H, subst H (and_intro rfl rfl))
|
||||
(assume H, and_elim H (assume H4 H5, prod_eq H4 H5)),
|
||||
decidable_iff_equiv _ (iff_symm H3)
|
||||
|
||||
end
|
||||
|
||||
instance prod_inhabited
|
||||
instance prod_eq_decidable
|
||||
|
||||
end prod
|
||||
|
|
|
@ -3,32 +3,47 @@
|
|||
--- Released under Apache 2.0 license as described in the file LICENSE.
|
||||
--- Author: Jeremy Avigad, Leonardo de Moura
|
||||
----------------------------------------------------------------------------------------------------
|
||||
|
||||
import logic.axioms.funext data.bool
|
||||
import data.bool
|
||||
using eq_ops bool
|
||||
|
||||
namespace set
|
||||
definition set (T : Type) := T → bool
|
||||
definition mem {T : Type} (x : T) (s : set T) := (s x) = tt
|
||||
definition set (T : Type) :=
|
||||
T → bool
|
||||
definition mem {T : Type} (x : T) (s : set T) :=
|
||||
(s x) = tt
|
||||
infix `∈` := mem
|
||||
|
||||
section
|
||||
parameter {T : Type}
|
||||
definition eqv {T : Type} (A B : set T) : Prop :=
|
||||
∀x, x ∈ A ↔ x ∈ B
|
||||
infixl `∼`:50 := eqv
|
||||
|
||||
definition empty : set T := λx, ff
|
||||
theorem eqv_refl {T : Type} (A : set T) : A ∼ A :=
|
||||
take x, iff_rfl
|
||||
|
||||
theorem eqv_symm {T : Type} {A B : set T} (H : A ∼ B) : B ∼ A :=
|
||||
take x, iff_symm (H x)
|
||||
|
||||
theorem eqv_trans {T : Type} {A B C : set T} (H1 : A ∼ B) (H2 : B ∼ C) : A ∼ C :=
|
||||
take x, iff_trans (H1 x) (H2 x)
|
||||
|
||||
definition empty {T : Type} : set T :=
|
||||
λx, ff
|
||||
notation `∅` := empty
|
||||
|
||||
theorem mem_empty (x : T) : ¬ (x ∈ ∅) :=
|
||||
theorem mem_empty {T : Type} (x : T) : ¬ (x ∈ ∅) :=
|
||||
assume H : x ∈ ∅, absurd H ff_ne_tt
|
||||
|
||||
definition univ : set T := λx, tt
|
||||
definition univ {T : Type} : set T :=
|
||||
λx, tt
|
||||
|
||||
theorem mem_univ (x : T) : x ∈ univ := refl _
|
||||
theorem mem_univ {T : Type} (x : T) : x ∈ univ :=
|
||||
rfl
|
||||
|
||||
definition inter (A B : set T) : set T := λx, A x && B x
|
||||
definition inter {T : Type} (A B : set T) : set T :=
|
||||
λx, A x && B x
|
||||
infixl `∩` := inter
|
||||
|
||||
theorem mem_inter (x : T) (A B : set T) : x ∈ A ∩ B ↔ (x ∈ A ∧ x ∈ B) :=
|
||||
theorem mem_inter {T : Type} (x : T) (A B : set T) : x ∈ A ∩ B ↔ (x ∈ A ∧ x ∈ B) :=
|
||||
iff_intro
|
||||
(assume H, and_intro (band_eq_tt_elim_left H) (band_eq_tt_elim_right H))
|
||||
(assume H,
|
||||
|
@ -36,16 +51,26 @@ iff_intro
|
|||
have e2 : B x = tt, from and_elim_right H,
|
||||
show A x && B x = tt, from e1⁻¹ ▸ e2⁻¹ ▸ band_tt_left tt)
|
||||
|
||||
theorem inter_comm (A B : set T) : A ∩ B = B ∩ A :=
|
||||
funext (λx, band_comm (A x) (B x))
|
||||
theorem inter_id {T : Type} (A : set T) : A ∩ A ∼ A :=
|
||||
take x, band_id (A x) ▸ iff_rfl
|
||||
|
||||
theorem inter_assoc (A B C : set T) : (A ∩ B) ∩ C = A ∩ (B ∩ C) :=
|
||||
funext (λx, band_assoc (A x) (B x) (C x))
|
||||
theorem inter_empty_right {T : Type} (A : set T) : A ∩ ∅ ∼ ∅ :=
|
||||
take x, band_ff_right (A x) ▸ iff_rfl
|
||||
|
||||
definition union (A B : set T) : set T := λx, A x || B x
|
||||
theorem inter_empty_left {T : Type} (A : set T) : ∅ ∩ A ∼ ∅ :=
|
||||
take x, band_ff_left (A x) ▸ iff_rfl
|
||||
|
||||
theorem inter_comm {T : Type} (A B : set T) : A ∩ B ∼ B ∩ A :=
|
||||
take x, band_comm (A x) (B x) ▸ iff_rfl
|
||||
|
||||
theorem inter_assoc {T : Type} (A B C : set T) : (A ∩ B) ∩ C ∼ A ∩ (B ∩ C) :=
|
||||
take x, band_assoc (A x) (B x) (C x) ▸ iff_rfl
|
||||
|
||||
definition union {T : Type} (A B : set T) : set T :=
|
||||
λx, A x || B x
|
||||
infixl `∪` := union
|
||||
|
||||
theorem mem_union (x : T) (A B : set T) : x ∈ A ∪ B ↔ (x ∈ A ∨ x ∈ B) :=
|
||||
theorem mem_union {T : Type} (x : T) (A B : set T) : x ∈ A ∪ B ↔ (x ∈ A ∨ x ∈ B) :=
|
||||
iff_intro
|
||||
(assume H, bor_to_or H)
|
||||
(assume H, or_elim H
|
||||
|
@ -54,12 +79,19 @@ iff_intro
|
|||
(assume Hb : B x = tt,
|
||||
show A x || B x = tt, from Hb⁻¹ ▸ bor_tt_right (A x)))
|
||||
|
||||
theorem union_comm (A B : set T) : A ∪ B = B ∪ A :=
|
||||
funext (λx, bor_comm (A x) (B x))
|
||||
theorem union_id {T : Type} (A : set T) : A ∪ A ∼ A :=
|
||||
take x, bor_id (A x) ▸ iff_rfl
|
||||
|
||||
theorem union_assoc (A B C : set T) : (A ∪ B) ∪ C = A ∪ (B ∪ C) :=
|
||||
funext (λx, bor_assoc (A x) (B x) (C x))
|
||||
theorem union_empty_right {T : Type} (A : set T) : A ∪ ∅ ∼ A :=
|
||||
take x, bor_ff_right (A x) ▸ iff_rfl
|
||||
|
||||
end
|
||||
theorem union_empty_left {T : Type} (A : set T) : ∅ ∪ A ∼ A :=
|
||||
take x, bor_ff_left (A x) ▸ iff_rfl
|
||||
|
||||
theorem union_comm {T : Type} (A B : set T) : A ∪ B ∼ B ∪ A :=
|
||||
take x, bor_comm (A x) (B x) ▸ iff_rfl
|
||||
|
||||
theorem union_assoc {T : Type} (A B C : set T) : (A ∪ B) ∪ C ∼ A ∪ (B ∪ C) :=
|
||||
take x, bor_assoc (A x) (B x) (C x) ▸ iff_rfl
|
||||
|
||||
end set
|
||||
|
|
|
@ -169,6 +169,9 @@ iff_intro
|
|||
theorem iff_refl (a : Prop) : a ↔ a :=
|
||||
iff_intro (assume H, H) (assume H, H)
|
||||
|
||||
theorem iff_rfl {a : Prop} : a ↔ a :=
|
||||
iff_refl a
|
||||
|
||||
theorem iff_trans {a b c : Prop} (H1 : a ↔ b) (H2 : b ↔ c) : a ↔ c :=
|
||||
iff_intro
|
||||
(assume Ha, iff_elim_left H2 (iff_elim_left H1 Ha))
|
||||
|
|
Loading…
Reference in a new issue