feat(hott/algebra) show that functors preserve inverses and isos
This commit is contained in:
parent
74824078a8
commit
97a1cc8edb
1 changed files with 24 additions and 0 deletions
|
@ -87,6 +87,30 @@ namespace functor
|
||||||
: functor.mk F H₁ id₁ comp₁ = functor.mk F H₂ id₂ comp₂ :=
|
: functor.mk F H₁ id₁ comp₁ = functor.mk F H₂ id₂ comp₂ :=
|
||||||
functor_eq (λc, idp) (λa b f, !id_leftright ⬝ !pH)
|
functor_eq (λc, idp) (λa b f, !id_leftright ⬝ !pH)
|
||||||
|
|
||||||
|
protected definition preserve_iso (F : C ⇒ D) {a b : C} (f : hom a b) [H : is_iso f] :
|
||||||
|
is_iso (F f) :=
|
||||||
|
begin
|
||||||
|
fapply @is_iso.mk, apply (F (f⁻¹)),
|
||||||
|
repeat (apply concat ; apply inverse ; apply (respect_comp F) ;
|
||||||
|
apply concat ; apply (ap (λ x, to_fun_hom F x)) ;
|
||||||
|
[apply left_inverse | apply right_inverse] ;
|
||||||
|
apply (respect_id F) ),
|
||||||
|
end
|
||||||
|
|
||||||
|
attribute preserve_iso [instance]
|
||||||
|
|
||||||
|
protected definition respect_inv (F : C ⇒ D) {a b : C} (f : hom a b) [H : is_iso f] :
|
||||||
|
F (f⁻¹) = (F f)⁻¹ :=
|
||||||
|
begin
|
||||||
|
fapply @left_inverse_eq_right_inverse, apply (F f),
|
||||||
|
apply concat, apply inverse, apply (respect_comp F),
|
||||||
|
apply concat, apply (ap (λ x, to_fun_hom F x)),
|
||||||
|
apply left_inverse, apply respect_id,
|
||||||
|
apply concat, apply inverse, apply (respect_comp F),
|
||||||
|
apply concat, apply (ap (λ x, to_fun_hom F x)),
|
||||||
|
apply right_inverse, apply respect_id,
|
||||||
|
end
|
||||||
|
|
||||||
protected definition assoc (H : C ⇒ D) (G : B ⇒ C) (F : A ⇒ B) :
|
protected definition assoc (H : C ⇒ D) (G : B ⇒ C) (F : A ⇒ B) :
|
||||||
H ∘f (G ∘f F) = (H ∘f G) ∘f F :=
|
H ∘f (G ∘f F) = (H ∘f G) ∘f F :=
|
||||||
!functor_mk_eq_constant (λa b f, idp)
|
!functor_mk_eq_constant (λa b f, idp)
|
||||||
|
|
Loading…
Add table
Reference in a new issue