diff --git a/library/data/finset/basic.lean b/library/data/finset/basic.lean index 133255888..5733d9a6a 100644 --- a/library/data/finset/basic.lean +++ b/library/data/finset/basic.lean @@ -213,7 +213,7 @@ decidable.by_cases (assume H : a ∈ s, by rewrite [card_insert_of_mem H]; apply le_succ) (assume H : a ∉ s, by rewrite [card_insert_of_not_mem H]) -lemma non_empty_of_card_succ {s : finset A} {n : nat} : card s = succ n → s ≠ ∅ := +lemma ne_empty_of_card_eq_succ {s : finset A} {n : nat} : card s = succ n → s ≠ ∅ := by intros; substvars; contradiction protected theorem induction [recursor 6] {P : finset A → Prop} diff --git a/library/data/finset/bigops.lean b/library/data/finset/bigops.lean index 0536c7bc4..62185d3f4 100644 --- a/library/data/finset/bigops.lean +++ b/library/data/finset/bigops.lean @@ -126,7 +126,7 @@ section deceqA intros [H1, H2], rewrite [Union_insert, H2 _ !mem_insert], cases (decidable.em (s' = ∅)) with [seq, sne], - {rewrite [seq, Union_empty, union_empty] }, + {rewrite [seq, Union_empty, union_empty]}, have H3 : ∀ x, x ∈ s' → f x = t, from (λ x H', H2 x (mem_insert_of_mem _ H')), rewrite [IH sne H3, union_self] end