refactor(library/data/fin): redo fin using recursive equations
This commit is contained in:
parent
5c118127ae
commit
98412ee942
1 changed files with 52 additions and 71 deletions
|
@ -7,7 +7,6 @@ Author: Leonardo de Moura
|
|||
|
||||
Finite ordinals.
|
||||
-/
|
||||
|
||||
import data.nat logic.cast
|
||||
open nat
|
||||
|
||||
|
@ -16,79 +15,61 @@ fz : Π n, fin (succ n),
|
|||
fs : Π {n}, fin n → fin (succ n)
|
||||
|
||||
namespace fin
|
||||
definition to_nat : Π {n}, fin n → nat,
|
||||
@to_nat ⌞n+1⌟ (fz n) := zero,
|
||||
@to_nat ⌞n+1⌟ (fs f) := succ (to_nat f)
|
||||
|
||||
definition z_cases_on (C : fin zero → Type) (p : fin zero) : C p :=
|
||||
by cases p
|
||||
theorem to_nat_fz (n : nat) : to_nat (fz n) = zero :=
|
||||
rfl
|
||||
|
||||
definition nz_cases_on {C : Π n, fin (succ n) → Type}
|
||||
(H₁ : Π n, C n (fz n))
|
||||
(H₂ : Π n (f : fin n), C n (fs f))
|
||||
{n : nat}
|
||||
(f : fin (succ n)) : C n f :=
|
||||
begin
|
||||
cases f with (n', n', f'),
|
||||
apply (H₁ n'),
|
||||
apply (H₂ n' f')
|
||||
end
|
||||
theorem to_nat_fs {n : nat} (f : fin n) : to_nat (fs f) = succ (to_nat f) :=
|
||||
rfl
|
||||
|
||||
definition to_nat {n : nat} (f : fin n) : nat :=
|
||||
fin.rec_on f
|
||||
(λ n, zero)
|
||||
(λ n f r, succ r)
|
||||
|
||||
theorem to_nat.lt {n : nat} (f : fin n) : to_nat f < n :=
|
||||
fin.rec_on f
|
||||
(λ n, calc
|
||||
theorem to_nat_lt : Π {n} (f : fin n), to_nat f < n,
|
||||
to_nat_lt (fz n) := calc
|
||||
to_nat (fz n) = 0 : rfl
|
||||
... < succ n : succ_pos n)
|
||||
(λ n f ih, calc
|
||||
to_nat (fs f) = succ (to_nat f) : rfl
|
||||
... < succ n : succ_lt ih)
|
||||
... < n+1 : succ_pos n,
|
||||
to_nat_lt (@fs n f) := calc
|
||||
to_nat (fs f) = (to_nat f)+1 : rfl
|
||||
... < n+1 : succ_lt (to_nat_lt f)
|
||||
|
||||
definition lift {n : nat} (f : fin n) : Π m, fin (m + n) :=
|
||||
fin.rec_on f
|
||||
(λ n m, fz (m + n))
|
||||
(λ n f ih m, fs (ih m))
|
||||
definition lift : Π {n : nat}, fin n → Π (m : nat), fin (m + n),
|
||||
@lift ⌞n+1⌟ (fz n) m := fz (m + n),
|
||||
@lift ⌞n+1⌟ (@fs n f) m := fs (lift f m)
|
||||
|
||||
theorem to_nat.lift {n : nat} (f : fin n) : ∀m, to_nat f = to_nat (lift f m) :=
|
||||
fin.rec_on f
|
||||
(λ n m, rfl)
|
||||
(λ n f ih m, calc
|
||||
to_nat (fs f) = succ (to_nat f) : rfl
|
||||
... = succ (to_nat (lift f m)) : ih
|
||||
... = to_nat (lift (fs f) m) : rfl)
|
||||
|
||||
private definition of_nat_core (p : nat) : fin (succ p) :=
|
||||
nat.rec_on p
|
||||
(fz zero)
|
||||
(λ a r, fs r)
|
||||
|
||||
private theorem to_nat.of_nat_core (p : nat) : to_nat (of_nat_core p) = p :=
|
||||
nat.induction_on p
|
||||
rfl
|
||||
(λ p₁ ih, calc
|
||||
to_nat (of_nat_core (succ p₁)) = succ (to_nat (of_nat_core p₁)) : rfl
|
||||
... = succ p₁ : ih)
|
||||
|
||||
private lemma of_nat_eq {p n : nat} (H : p < n) : n - succ p + succ p = n :=
|
||||
add_sub_ge_left (succ_le_of_lt H)
|
||||
|
||||
definition of_nat (p : nat) (n : nat) : p < n → fin n :=
|
||||
λ H : p < n,
|
||||
eq.rec_on (of_nat_eq H) (lift (of_nat_core p) (n - succ p))
|
||||
|
||||
theorem of_nat_def (p : nat) (n : nat) (H : p < n) : of_nat p n H = eq.rec_on (of_nat_eq H) (lift (of_nat_core p) (n - succ p)) :=
|
||||
theorem lift_fz (n m : nat) : lift (fz n) m = fz (m + n) :=
|
||||
rfl
|
||||
|
||||
theorem of_nat_heq (p : nat) (n : nat) (H : p < n) : of_nat p n H == lift (of_nat_core p) (n - succ p) :=
|
||||
heq.symm (eq_rec_to_heq (eq.symm (of_nat_def p n H)))
|
||||
theorem lift_fs {n : nat} (f : fin n) (m : nat) : lift (fs f) m = fs (lift f m) :=
|
||||
rfl
|
||||
|
||||
theorem to_nat.of_nat (p : nat) (n : nat) (H : p < n) : to_nat (of_nat p n H) = p :=
|
||||
have aux₁ : to_nat (of_nat p n H) == to_nat (lift (of_nat_core p) (n - succ p)), from
|
||||
hcongr_arg2 @to_nat (eq.symm (of_nat_eq H)) (of_nat_heq p n H),
|
||||
have aux₂ : to_nat (lift (of_nat_core p) (n - succ p)) = p, from calc
|
||||
to_nat (lift (of_nat_core p) (n - succ p)) = to_nat (of_nat_core p) : to_nat.lift
|
||||
... = p : to_nat.of_nat_core,
|
||||
heq.to_eq (heq.trans aux₁ (heq.of_eq aux₂))
|
||||
theorem to_nat_lift : ∀ {n : nat} (f : fin n) (m : nat), to_nat f = to_nat (lift f m),
|
||||
to_nat_lift (fz n) m := rfl,
|
||||
to_nat_lift (@fs n f) m := calc
|
||||
to_nat (fs f) = (to_nat f) + 1 : rfl
|
||||
... = (to_nat (lift f m)) + 1 : to_nat_lift f
|
||||
... = to_nat (lift (fs f) m) : rfl
|
||||
|
||||
definition of_nat : Π (p : nat) (n : nat), p < n → fin n,
|
||||
of_nat 0 0 h := absurd h (not_lt_zero zero),
|
||||
of_nat 0 (n+1) h := fz n,
|
||||
of_nat (p+1) 0 h := absurd h (not_lt_zero (succ p)),
|
||||
of_nat (p+1) (n+1) h := fs (of_nat p n (lt.of_succ_lt_succ h))
|
||||
|
||||
theorem of_nat_zero_succ (n : nat) (h : 0 < n+1) : of_nat 0 (n+1) h = fz n :=
|
||||
rfl
|
||||
|
||||
theorem of_nat_succ_succ (p n : nat) (h : p+1 < n+1) :
|
||||
of_nat (p+1) (n+1) h = fs (of_nat p n (lt.of_succ_lt_succ h)) :=
|
||||
rfl
|
||||
|
||||
theorem to_nat_of_nat : ∀ (p : nat) (n : nat) (h : p < n), to_nat (of_nat p n h) = p,
|
||||
to_nat_of_nat 0 0 h := absurd h (not_lt_zero 0),
|
||||
to_nat_of_nat 0 (n+1) h := rfl,
|
||||
to_nat_of_nat (p+1) 0 h := absurd h (not_lt_zero (p+1)),
|
||||
to_nat_of_nat (p+1) (n+1) h := calc
|
||||
to_nat (of_nat (p+1) (n+1) h)
|
||||
= succ (to_nat (of_nat p n _)) : rfl
|
||||
... = succ p : to_nat_of_nat p n _
|
||||
|
||||
end fin
|
||||
|
|
Loading…
Reference in a new issue