From 98ddc62f6ccb1348622879194332c311ec0152a6 Mon Sep 17 00:00:00 2001 From: Jeremy Avigad Date: Thu, 12 Nov 2015 20:35:05 -0500 Subject: [PATCH] feat(library/data/complex): add complex numbers --- library/data/complex.lean | 375 ++++++++++++++++++++++++++++++++++++++ library/data/data.md | 3 +- library/data/default.lean | 2 +- 3 files changed, 378 insertions(+), 2 deletions(-) create mode 100644 library/data/complex.lean diff --git a/library/data/complex.lean b/library/data/complex.lean new file mode 100644 index 000000000..1531dbb27 --- /dev/null +++ b/library/data/complex.lean @@ -0,0 +1,375 @@ +/- +Copyright (c) 2015 Jacob Gross. All rights reserved. +Released under Apache 2.0 license as described in the file LICENSE. +Authors: Jacob Gross, Jeremy Avigad + +The complex numbers. +-/ +import data.real +open real eq.ops algebra + +record complex : Type := +(re : ℝ) (im : ℝ) + +notation `ℂ` := complex + +namespace complex + +variables (u w z : ℂ) +variable n : ℕ + +protected proposition eq {z w : ℂ} (H1 : complex.re z = complex.re w) +(H2 : complex.im z = complex.im w) : z = w := +begin + induction z, + induction w, + rewrite [H1, H2] +end + +protected proposition eta (z : ℂ) : complex.mk (complex.re z) (complex.im z) = z := +by cases z; exact rfl + +definition of_real [coercion] (x : ℝ) : ℂ := complex.mk x 0 +definition of_rat [coercion] (q : ℚ) : ℂ := rat.to.complex q +definition of_int [coercion] (i : ℤ) : ℂ := int.to.complex i +definition of_nat [coercion] (n : ℕ) : ℂ := nat.to.complex n +definition of_num [coercion] [reducible] (n : num) : ℂ := num.to.complex n + +protected definition prio : num := num.pred real.prio + +definition complex_has_zero [reducible] [instance] [priority complex.prio] : has_zero ℂ := +has_zero.mk (of_nat 0) + +definition complex_has_one [reducible] [instance] [priority complex.prio] : has_one ℂ := +has_one.mk (of_nat 1) + +theorem re_of_real (x : ℝ) : re (of_real x) = x := rfl + +theorem im_of_real (x : ℝ) : im (of_real x) = 0 := rfl + +protected definition add (z w : ℂ) : ℂ := +complex.mk (complex.re z + complex.re w) (complex.im z + complex.im w) + +protected definition neg (z : ℂ) : ℂ := +complex.mk (-(re z)) (-(im z)) + +protected definition mul (z w : ℂ) : ℂ := +complex.mk + (complex.re w * complex.re z - complex.im w * complex.im z) + (complex.re w * complex.im z + complex.im w * complex.re z) + +/- notation -/ + +definition complex_has_add [reducible] [instance] [priority complex.prio] : has_add complex := +has_add.mk complex.add + +definition complex_has_neg [reducible] [instance] [priority complex.prio] : has_neg complex := +has_neg.mk complex.neg + +definition complex_has_mul [reducible] [instance] [priority complex.prio] : has_mul complex := +has_mul.mk complex.mul + +protected theorem add_def (z w : ℂ) : + z + w = complex.mk (complex.re z + complex.re w) (complex.im z + complex.im w) := rfl + +protected theorem neg_def (z : ℂ) : -z = complex.mk (-(re z)) (-(im z)) := rfl + +protected theorem mul_def (z w : ℂ) : + z * w = complex.mk + (complex.re w * complex.re z - complex.im w * complex.im z) + (complex.re w * complex.im z + complex.im w * complex.re z) := rfl + +-- TODO: what notation should we use for i? + +definition ii := complex.mk 0 1 + +theorem i_mul_i : ii * ii = -1 := rfl + +/- basic properties -/ + +protected theorem add_comm (w z : ℂ) : w + z = z + w := +complex.eq !add.comm !add.comm + +protected theorem add_assoc (w z u : ℂ) : (w + z) + u = w + (z + u) := +complex.eq !add.assoc !add.assoc + +protected theorem add_zero (z : ℂ) : z + 0 = z := +complex.eq !add_zero !add_zero + +protected theorem zero_add (z : ℂ) : 0 + z = z := !complex.add_comm ▸ !complex.add_zero + +definition smul (x : ℝ) (z : ℂ) : ℂ := +complex.mk (x*re z) (x*im z) + +protected theorem add_right_inv : z + - z = 0 := +complex.eq !add.right_inv !add.right_inv + +protected theorem add_left_inv : - z + z = 0 := +!complex.add_comm ▸ !complex.add_right_inv + +protected theorem mul_comm : w * z = z * w := +by rewrite [*complex.mul_def, *mul.comm (re w), *mul.comm (im w), add.comm] + +protected theorem one_mul : 1 * z = z := +by krewrite [complex.mul_def, *mul_one, *mul_zero, sub_zero, zero_add, complex.eta] + +protected theorem mul_one : z * 1 = z := !complex.mul_comm ▸ !complex.one_mul + +protected theorem left_distrib : u * (w + z) = u * w + u * z := +begin + rewrite [*complex.mul_def, *complex.add_def, ▸*, *right_distrib, -sub_sub, *sub_eq_add_neg], + rewrite [*add.assoc, add.left_comm (re z * im u), add.left_comm (-_)] +end + +protected theorem right_distrib : (u + w) * z = u * z + w * z := +by rewrite [*complex.mul_comm _ z, complex.left_distrib] + +protected theorem mul_assoc : (u * w) * z = u * (w * z) := +begin + rewrite [*complex.mul_def, ▸*, *sub_eq_add_neg, *left_distrib, *right_distrib, *neg_add], + rewrite [-*neg_mul_eq_neg_mul, -*neg_mul_eq_mul_neg, *add.assoc, *mul.assoc], + rewrite [add.comm (-(im z * (im w * _))), add.comm (-(im z * (im w * _))), *add.assoc] +end + +theorem re_add (z w : ℂ) : re (z + w) = re z + re w := rfl + +theorem im_add (z w : ℂ) : im (z + w) = im z + im w := rfl + +/- coercions -/ + +theorem of_real_add (a b : ℝ) : of_real (a + b) = of_real a + of_real b := rfl + +theorem of_real_mul (a b : ℝ) : of_real (a * b) = (of_real a) * (of_real b) := +by rewrite [complex.mul_def, *re_of_real, *im_of_real, *mul_zero, *zero_mul, sub_zero, add_zero, + mul.comm] + +theorem of_real_neg (a : ℝ) : of_real (-a) = -(of_real a) := rfl + +theorem of_real.inj {a b : ℝ} (H : of_real a = of_real b) : a = b := +show re (of_real a) = re (of_real b), from congr_arg re H + +theorem eq_of_of_real_eq_of_real {a b : ℝ} (H : of_real a = of_real b) : a = b := +of_real.inj H + +theorem of_real_eq_of_real_iff (a b : ℝ) : of_real a = of_real b ↔ a = b := +iff.intro eq_of_of_real_eq_of_real !congr_arg + +/- make complex an instance of ring -/ + +protected definition comm_ring [reducible] : algebra.comm_ring complex := + begin + fapply algebra.comm_ring.mk, + exact complex.add, + exact complex.add_assoc, + exact 0, + exact complex.zero_add, + exact complex.add_zero, + exact complex.neg, + exact complex.add_left_inv, + exact complex.add_comm, + exact complex.mul, + exact complex.mul_assoc, + exact 1, + apply complex.one_mul, + apply complex.mul_one, + apply complex.left_distrib, + apply complex.right_distrib, + apply complex.mul_comm + end + +local attribute complex.comm_ring [instance] + +definition complex_has_sub [reducible] [instance] [priority complex.prio] : has_sub complex := +has_sub.mk has_sub.sub + +theorem of_real_sub (x y : ℝ) : of_real (x - y) = of_real x - of_real y := +rfl + +-- TODO: move these +private lemma eq_zero_of_mul_self_eq_zero {x : ℝ} (H : x * x = 0) : x = 0 := + iff.mp !or_self (!eq_zero_or_eq_zero_of_mul_eq_zero H) + +private lemma eq_zero_of_sum_square_eq_zero {x y : ℝ} (H : x * x + y * y = 0) : x = 0 := +have x * x ≤ (0 : ℝ), from calc + x * x ≤ x * x + y * y : le_add_of_nonneg_right (mul_self_nonneg y) + ... = 0 : H, +eq_zero_of_mul_self_eq_zero (le.antisymm this (mul_self_nonneg x)) + +/- complex modulus and conjugate-/ + +definition cmod (z : ℂ) : ℝ := +(complex.re z) * (complex.re z) + (complex.im z) * (complex.im z) + +theorem cmod_zero : cmod 0 = 0 := rfl + +theorem cmod_of_real (x : ℝ) : cmod x = x * x := +by rewrite [↑cmod, re_of_real, im_of_real, mul_zero, add_zero] + +theorem eq_zero_of_cmod_eq_zero {z : ℂ} (H : cmod z = 0) : z = 0 := +have H1 : (complex.re z) * (complex.re z) + (complex.im z) * (complex.im z) = 0, + from H, +have H2 : complex.re z = 0, from eq_zero_of_sum_square_eq_zero H1, +have H3 : complex.im z = 0, from eq_zero_of_sum_square_eq_zero (!add.comm ▸ H1), +show z = 0, from complex.eq H2 H3 + +definition conj (z : ℂ) : ℂ := complex.mk (complex.re z) (-(complex.im z)) + +theorem conj_of_real {x : ℝ} : conj (of_real x) = of_real x := rfl + +theorem conj_add (z w : ℂ) : conj (z + w) = conj z + conj w := +by rewrite [↑conj, *complex.add_def, ▸*, neg_add] + +theorem conj_mul (z w : ℂ) : conj (z * w) = conj z * conj w := +by rewrite [↑conj, *complex.mul_def, ▸*, neg_mul_neg, neg_add, + -neg_mul_eq_mul_neg, -neg_mul_eq_neg_mul] + +theorem conj_conj (z : ℂ) : conj (conj z) = z := +by rewrite [↑conj, neg_neg, complex.eta] + +theorem mul_conj_eq_of_real_cmod (z : ℂ) : z * conj z = of_real (cmod z) := +by rewrite [↑conj, ↑cmod, ↑of_real, complex.mul_def, ▸*, -*neg_mul_eq_neg_mul, + sub_neg_eq_add, mul.comm (re z) (im z), add.right_inv] + +theorem cmod_conj (z : ℂ) : cmod (conj z) = cmod z := +begin + apply eq_of_of_real_eq_of_real, + rewrite [-*mul_conj_eq_of_real_cmod, conj_conj, mul.comm] +end + +theorem cmod_mul (z w : ℂ) : cmod (z * w) = cmod z * cmod w := +begin + apply eq_of_of_real_eq_of_real, + rewrite [of_real_mul, -*mul_conj_eq_of_real_cmod, conj_mul, *mul.assoc, mul.left_comm w] +end + +protected noncomputable definition inv (z : ℂ) : complex := conj z * of_real (cmod z)⁻¹ + +protected noncomputable definition complex_has_inv [reducible] [instance] [priority complex.prio] : + has_inv complex := has_inv.mk complex.inv + +protected theorem inv_def (z : ℂ) : z⁻¹ = conj z * of_real (cmod z)⁻¹ := rfl + +protected theorem inv_zero : 0⁻¹ = (0 : ℂ) := +by krewrite [complex.inv_def, conj_of_real, zero_mul] + +theorem of_real_inv (x : ℝ) : of_real x⁻¹ = (of_real x)⁻¹ := +classical.by_cases + (assume H : x = 0, + by krewrite [H, inv_zero, complex.inv_zero]) + (assume H : x ≠ 0, + by rewrite [complex.inv_def, cmod_of_real, conj_of_real, mul_inv_eq H H, -of_real_mul, + -mul.assoc, mul_inv_cancel H, one_mul]) + +noncomputable protected definition div (z w : ℂ) : ℂ := z * w⁻¹ + +noncomputable definition complex_has_div [instance] [reducible] [priority complex.prio] : + has_div complex := + has_div.mk complex.div + +protected theorem div_def (z w : ℂ) : z / w = z * w⁻¹ := rfl + +theorem of_real_div (x y : ℝ) : of_real (x / y) = of_real x / of_real y := +have H : x / y = x * y⁻¹, from rfl, +by+ rewrite [H, complex.div_def, of_real_mul, of_real_inv] + +theorem conj_inv (z : ℂ) : (conj z)⁻¹ = conj (z⁻¹) := +by rewrite [*complex.inv_def, conj_mul, *conj_conj, conj_of_real, cmod_conj] + +protected theorem mul_inv_cancel {z : ℂ} (H : z ≠ 0) : z * z⁻¹ = 1 := +by rewrite [complex.inv_def, -mul.assoc, mul_conj_eq_of_real_cmod, -of_real_mul, + mul_inv_cancel (assume H', H (eq_zero_of_cmod_eq_zero H'))] + +protected theorem inv_mul_cancel {z : ℂ} (H : z ≠ 0) : z⁻¹ * z = 1 := +!mul.comm ▸ complex.mul_inv_cancel H + +protected noncomputable definition has_decidable_eq : decidable_eq ℂ := +take z w, classical.prop_decidable (z = w) + +protected theorem zero_ne_one : (0 : ℂ) ≠ 1 := +assume H, zero_ne_one (eq_of_of_real_eq_of_real H) + +protected noncomputable definition discrete_field [reducible][trans_instance] : + discrete_field ℂ := +⦃ discrete_field, complex.comm_ring, + mul_inv_cancel := @complex.mul_inv_cancel, + inv_mul_cancel := @complex.inv_mul_cancel, + zero_ne_one := complex.zero_ne_one, + inv_zero := complex.inv_zero, + has_decidable_eq := complex.has_decidable_eq +⦄ + +-- TODO : we still need the whole family of coercion properties, for nat, int, rat + +-- coercions + +theorem of_rat_eq (a : ℚ) : of_rat a = of_real (real.of_rat a) := rfl + +theorem of_int_eq (a : ℤ) : of_int a = of_real (real.of_int a) := rfl + +theorem of_nat_eq (a : ℕ) : of_nat a = of_real (real.of_nat a) := rfl + +theorem of_rat.inj {x y : ℚ} (H : of_rat x = of_rat y) : x = y := +real.of_rat.inj (of_real.inj H) + +theorem eq_of_of_rat_eq_of_rat {x y : ℚ} (H : of_rat x = of_rat y) : x = y := +of_rat.inj H + +theorem of_rat_eq_of_rat_iff (x y : ℚ) : of_rat x = of_rat y ↔ x = y := +iff.intro eq_of_of_rat_eq_of_rat !congr_arg + +theorem of_int.inj {a b : ℤ} (H : of_int a = of_int b) : a = b := +rat.of_int.inj (of_rat.inj H) + +theorem eq_of_of_int_eq_of_int {a b : ℤ} (H : of_int a = of_int b) : a = b := +of_int.inj H + +theorem of_int_eq_of_int_iff (a b : ℤ) : of_int a = of_int b ↔ a = b := +iff.intro of_int.inj !congr_arg + +theorem of_nat.inj {a b : ℕ} (H : of_nat a = of_nat b) : a = b := +int.of_nat.inj (of_int.inj H) + +theorem eq_of_of_nat_eq_of_nat {a b : ℕ} (H : of_nat a = of_nat b) : a = b := +of_nat.inj H + +theorem of_nat_eq_of_nat_iff (a b : ℕ) : of_nat a = of_nat b ↔ a = b := +iff.intro of_nat.inj !congr_arg + +open rat + +theorem of_rat_add (a b : ℚ) : of_rat (a + b) = of_rat a + of_rat b := +by rewrite [of_rat_eq] + +theorem of_rat_neg (a : ℚ) : of_rat (-a) = -of_rat a := +by rewrite [of_rat_eq] + +-- these show why we have to use krewrite in the next theorem: there are +-- two different instances of "has_mul". + +-- set_option pp.notation false +-- set_option pp.coercions true +-- set_option pp.implicit true + +theorem of_rat_mul (a b : ℚ) : of_rat (a * b) = of_rat a * of_rat b := +by krewrite [of_rat_eq, real.of_rat_mul, of_real_mul] + +open int + +theorem of_int_add (a b : ℤ) : of_int (a + b) = of_int a + of_int b := + by krewrite [of_int_eq, real.of_int_add, of_real_add] + +theorem of_int_neg (a : ℤ) : of_int (-a) = -of_int a := + by krewrite [of_int_eq, real.of_int_neg, of_real_neg] + +theorem of_int_mul (a b : ℤ) : of_int (a * b) = of_int a * of_int b := + by krewrite [of_int_eq, real.of_int_mul, of_real_mul] + +open nat + +theorem of_nat_add (a b : ℕ) : of_nat (a + b) = of_nat a + of_nat b := + by krewrite [of_nat_eq, real.of_nat_add, of_real_add] + +theorem of_nat_mul (a b : ℕ) : of_nat (a * b) = of_nat a * of_nat b := + by krewrite [of_nat_eq, real.of_nat_mul, of_real_mul] + +end complex diff --git a/library/data/data.md b/library/data/data.md index 9ed1e0669..b2e5196f8 100644 --- a/library/data/data.md +++ b/library/data/data.md @@ -15,7 +15,8 @@ Basic types: * [int](int/int.md) : the integers * [rat](rat/rat.md) : the rationals * [pnat](pnat.lean) : the positive natural numbers -* [real](real.lean) : the real numbers +* [real](real/real.md) : the real numbers +* [complex](complex.lean) : the complex numbers Constructors: diff --git a/library/data/default.lean b/library/data/default.lean index f98c9116b..07c9cbb77 100644 --- a/library/data/default.lean +++ b/library/data/default.lean @@ -5,4 +5,4 @@ Author: Jeremy Avigad -/ import .empty .unit .bool .num .string .nat .int .rat .fintype import .prod .sum .sigma .option .quotient .list .finset .set .stream -import .fin +import .fin .real .complex