fix two errors in the hott library
This commit is contained in:
parent
183ca62cc1
commit
98fb55e428
2 changed files with 3 additions and 3 deletions
|
@ -12,7 +12,7 @@ a^n is used for the first, but users can locally redefine it to gpow when needed
|
||||||
Note: power adopts the convention that 0^0=1.
|
Note: power adopts the convention that 0^0=1.
|
||||||
-/
|
-/
|
||||||
import types.nat.basic types.int.basic .homomorphism .group_theory
|
import types.nat.basic types.int.basic .homomorphism .group_theory
|
||||||
open algebra
|
open algebra eq
|
||||||
|
|
||||||
namespace algebra
|
namespace algebra
|
||||||
variables {A B : Type}
|
variables {A B : Type}
|
||||||
|
@ -172,7 +172,7 @@ theorem gpow_comm (a : A) (i j : ℤ) : gpow a i * gpow a j = gpow a j * gpow a
|
||||||
by rewrite [-*gpow_add, add.comm]
|
by rewrite [-*gpow_add, add.comm]
|
||||||
|
|
||||||
lemma gpow_neg (a : A) : Π(n : ℤ), gpow a (-n) = (gpow a n)⁻¹
|
lemma gpow_neg (a : A) : Π(n : ℤ), gpow a (-n) = (gpow a n)⁻¹
|
||||||
| (of_nat n) := by cases n with n; rewrite [gpow_zero,one_inv]; reflexivity
|
| (of_nat n) := begin cases n with n, exact !one_inv⁻¹, reflexivity end
|
||||||
| -[1+n] := by rewrite [↑gpow at {2}, inv_inv]
|
| -[1+n] := by rewrite [↑gpow at {2}, inv_inv]
|
||||||
|
|
||||||
lemma inv_gpow (a : A) : Π(n : ℤ), gpow a⁻¹ n = (gpow a n)⁻¹
|
lemma inv_gpow (a : A) : Π(n : ℤ), gpow a⁻¹ n = (gpow a n)⁻¹
|
||||||
|
|
|
@ -192,7 +192,7 @@ begin
|
||||||
{ exact equiv_of_pequiv (freudenthal_homotopy_group_pequiv H A)},
|
{ exact equiv_of_pequiv (freudenthal_homotopy_group_pequiv H A)},
|
||||||
{ intro g h,
|
{ intro g h,
|
||||||
refine _ ⬝ !homotopy_group_pequiv_loop_ptrunc_inv_con,
|
refine _ ⬝ !homotopy_group_pequiv_loop_ptrunc_inv_con,
|
||||||
apply ap !homotopy_group_pequiv_loop_ptrunc⁻¹ᵉ*,
|
refine ap !homotopy_group_pequiv_loop_ptrunc⁻¹ᵉ* _,
|
||||||
refine ap (loopn_pequiv_loopn _ _) _ ⬝ !loopn_pequiv_loopn_con,
|
refine ap (loopn_pequiv_loopn _ _) _ ⬝ !loopn_pequiv_loopn_con,
|
||||||
refine ap !homotopy_group_pequiv_loop_ptrunc _ ⬝ !homotopy_group_pequiv_loop_ptrunc_con,
|
refine ap !homotopy_group_pequiv_loop_ptrunc _ ⬝ !homotopy_group_pequiv_loop_ptrunc_con,
|
||||||
apply homotopy_group_succ_in_con}
|
apply homotopy_group_succ_in_con}
|
||||||
|
|
Loading…
Reference in a new issue