feat(theories/analysis): more on frechet derivatives

This commit is contained in:
Rob Lewis 2016-02-19 12:32:19 -05:00 committed by Leonardo de Moura
parent 3c0f19c967
commit 99a4ffb8f2

View file

@ -19,6 +19,21 @@ structure is_bdd_linear_map [class] {V W : Type} [normed_vector_space V] [normed
/-theorem is_bdd_linear_map_id [instance] (V : Type) [normed_vector_space V] : is_bdd_linear_map (λ a : V, a) := /-theorem is_bdd_linear_map_id [instance] (V : Type) [normed_vector_space V] : is_bdd_linear_map (λ a : V, a) :=
sorry-/ sorry-/
theorem is_bdd_linear_map_zero [instance] (V W : Type) [normed_vector_space V] [normed_vector_space W] :
is_bdd_linear_map (λ x : V, (0 : W)) :=
begin
fapply is_bdd_linear_map.mk,
intros,
rewrite zero_add,
intros,
rewrite smul_zero,
exact 1,
exact zero_lt_one,
intros,
rewrite [norm_zero, one_mul],
apply norm_nonneg
end
theorem is_bdd_linear_map_add [instance] {V W : Type} [normed_vector_space V] [normed_vector_space W] theorem is_bdd_linear_map_add [instance] {V W : Type} [normed_vector_space V] [normed_vector_space W]
(f g : V → W) [Hbf : is_bdd_linear_map f] [Hbg : is_bdd_linear_map g] : (f g : V → W) [Hbf : is_bdd_linear_map f] [Hbg : is_bdd_linear_map g] :
is_bdd_linear_map (λ x, f x + g x) := is_bdd_linear_map (λ x, f x + g x) :=
@ -40,6 +55,57 @@ theorem is_bdd_linear_map_add [instance] {V W : Type} [normed_vector_space V] [n
repeat apply is_bdd_linear_map.op_norm_bound} repeat apply is_bdd_linear_map.op_norm_bound}
end end
theorem is_bdd_linear_map_smul [instance] {V W : Type} [normed_vector_space V] [normed_vector_space W]
(f : V → W) (c : ) [Hbf : is_bdd_linear_map f] : is_bdd_linear_map (λ x, c • f x) :=
begin
apply @decidable.cases_on (c = 0),
exact _,
{intro Hcz,
rewrite Hcz,
have Hfe : (λ x : V, (0 : ) • f x) = (λ x : V, 0), from funext (λ x, !zero_smul),
rewrite Hfe,
apply is_bdd_linear_map_zero},
intro Hcnz,
fapply is_bdd_linear_map.mk,
{intros,
rewrite [linear_map_additive f, smul_left_distrib]},
{intros,
rewrite [linear_map_homogeneous f, -*mul_smul, {c * a}mul.comm]},
{exact (abs c) * is_bdd_linear_map.op_norm _ _ f},
{have Hpos : abs c > 0, from abs_pos_of_ne_zero Hcnz,
apply mul_pos,
assumption,
apply is_bdd_linear_map.op_norm_pos},
{intro,
rewrite [norm_smul, mul.assoc],
apply mul_le_mul_of_nonneg_left,
apply is_bdd_linear_map.op_norm_bound,
apply abs_nonneg}
end
-- this can't be an instance because things loop
theorem is_bdd_linear_map_comp {U V W : Type} [normed_vector_space U] [normed_vector_space V]
[normed_vector_space W] (f : V → W) (g : U → V) [is_bdd_linear_map f] [is_bdd_linear_map g] :
is_bdd_linear_map (λ u, f (g u)) :=
begin
fapply is_bdd_linear_map.mk,
{intros,
rewrite [linear_map_additive g, linear_map_additive f]},
{intros,
rewrite [linear_map_homogeneous g, linear_map_homogeneous f]},
{exact is_bdd_linear_map.op_norm _ _ f * is_bdd_linear_map.op_norm _ _ g},
{apply mul_pos, repeat apply is_bdd_linear_map.op_norm_pos},
{intros,
apply le.trans,
apply is_bdd_linear_map.op_norm_bound _ _ f,
apply le.trans,
apply mul_le_mul_of_nonneg_left,
apply is_bdd_linear_map.op_norm_bound _ _ g,
apply le_of_lt !is_bdd_linear_map.op_norm_pos,
rewrite *mul.assoc,
apply le.refl}
end
variables {V W : Type} variables {V W : Type}
variables [HV : normed_vector_space V] [HW : normed_vector_space W] variables [HV : normed_vector_space V] [HW : normed_vector_space W]
--variable f : V → W --linear_operator V W --variable f : V → W --linear_operator V W
@ -79,11 +145,41 @@ variables {V W : Type}
variables [HV : normed_vector_space V] [HW : normed_vector_space W] variables [HV : normed_vector_space V] [HW : normed_vector_space W]
include HV HW include HV HW
open topology --open topology
definition is_frechet_deriv_at (f A : V → W) [is_bdd_linear_map A] (x : V) := definition is_frechet_deriv_at (f A : V → W) [is_bdd_linear_map A] (x : V) :=
(λ h : V, ∥f (x + h) - f x - A h ∥ / ∥ h ∥) ⟶ 0 at 0 (λ h : V, ∥f (x + h) - f x - A h ∥ / ∥ h ∥) ⟶ 0 at 0
example (f A : V → W) [is_bdd_linear_map A] (x : V) (H : is_frechet_deriv_at f A x) : true :=
begin
rewrite [↑is_frechet_deriv_at at H, ↑converges_to_at at H]
end
theorem is_frechet_deriv_at_intro (f A : V → W) [is_bdd_linear_map A] (x : V)
(H : ∀ ⦃ε : ℝ⦄, ε > 0 →
(∃ δ : , δ > 0 ∧ ∀ ⦃x' : V⦄, x' ≠ 0 ∧ ∥x'∥ < δ → ∥f (x + x') - f x - A x'∥ / ∥x'∥ < ε)) :
is_frechet_deriv_at f A x :=
begin
intros ε Hε,
cases H Hε with δ Hδ,
cases Hδ with Hδ Hδ',
existsi δ,
split,
assumption,
intros x' Hx',
cases Hx' with Hx'1 Hx'2,
show abs (∥f (x + x') - f x - A x'∥ / ∥x'∥ - 0) < ε, begin
have H : ∥f (x + x') - f x - A x'∥ / ∥x'∥ ≥ 0,
from div_nonneg_of_nonneg_of_nonneg !norm_nonneg !norm_nonneg,
rewrite [sub_zero, abs_of_nonneg H],
apply Hδ',
split,
assumption,
rewrite [-sub_zero x'],
apply Hx'2
end
end
structure frechet_diffable_at [class] (f : V → W) (x : V) := structure frechet_diffable_at [class] (f : V → W) (x : V) :=
(A : V → W) [HA : is_bdd_linear_map A] (is_fr_der : is_frechet_deriv_at f A x) (A : V → W) [HA : is_bdd_linear_map A] (is_fr_der : is_frechet_deriv_at f A x)
@ -101,7 +197,63 @@ theorem frechet_deriv_spec [Hf : frechet_diffable_at f x] :
(λ h : V, ∥f (x + h) - f x - (frechet_deriv_at f x h) ∥ / ∥ h ∥) ⟶ 0 at 0 := (λ h : V, ∥f (x + h) - f x - (frechet_deriv_at f x h) ∥ / ∥ h ∥) ⟶ 0 at 0 :=
frechet_diffable_at.is_fr_der _ _ f x frechet_diffable_at.is_fr_der _ _ f x
theorem frechet_diffable_at_add (A B : V → W) [is_bdd_linear_map A] [is_bdd_linear_map B] theorem frechet_deriv_at_const {w : W} : is_frechet_deriv_at (λ v : V, w) (λ v : V, 0) x :=
begin
intros ε Hε,
existsi 1,
split,
exact zero_lt_one,
intros x' Hx',
rewrite [sub_self, sub_zero, norm_zero],
krewrite [zero_div, dist_self],
assumption
end
theorem frechet_deriv_at_smul {c : } {A : V → W} [is_bdd_linear_map A]
(Hf : is_frechet_deriv_at f A x) : is_frechet_deriv_at (λ y, c • f y) (λ y, c • A y) x :=
begin
eapply @decidable.cases_on (abs c = 0),
exact _,
{intro Hc,
have Hz : c = 0, from eq_zero_of_abs_eq_zero Hc,
have Hfz : (λ y : V, (0 : ) • f y) = (λ y : V, 0), from funext (λ y, !zero_smul),
have Hfz' : (λ x : V, (0 : ) • A x) = (λ x : V, 0), from funext (λ y, !zero_smul),
-- if is_frechet_deriv_at were a prop, I think we could rewrite Hfz' and apply frechet_deriv_at_const
rewrite [Hz, Hfz, ↑is_frechet_deriv_at],
intro ε Hε,
existsi 1,
split,
exact zero_lt_one,
intro x' Hx',
rewrite [zero_smul, *sub_zero, norm_zero],
krewrite [zero_div, dist_self],
exact Hε},
intro Hcnz,
rewrite ↑is_frechet_deriv_at,
intros ε Hε,
have Hεc : ε / abs c > 0, from div_pos_of_pos_of_pos Hε (lt_of_le_of_ne !abs_nonneg (ne.symm Hcnz)),
cases Hf Hεc with δ Hδ,
cases Hδ with Hδp Hδ,
existsi δ,
split,
assumption,
intro x' Hx',
show abs ((∥c • f (x + x') - c • f x - c • A x'∥ / ∥x'∥ - 0)) < ε, begin
rewrite [sub_zero, -2 smul_sub_left_distrib, norm_smul],
krewrite mul_div_assoc,
rewrite [abs_mul, abs_abs, -{ε}mul_div_cancel' Hcnz],
apply mul_lt_mul_of_pos_left,
have Hδ' : abs (∥f (x + x') - f x - A x'∥ / ∥x'∥ - 0) < ε / abs c, from Hδ Hx',
rewrite sub_zero at Hδ',
apply Hδ',
apply lt_of_le_of_ne,
apply abs_nonneg,
apply ne.symm,
apply Hcnz
end
end
theorem frechet_diffable_at_add {A B : V → W} [is_bdd_linear_map A] [is_bdd_linear_map B]
(Hf : is_frechet_deriv_at f A x) (Hg : is_frechet_deriv_at g B x) : (Hf : is_frechet_deriv_at f A x) (Hg : is_frechet_deriv_at g B x) :
is_frechet_deriv_at (λ y, f y + g y) (λ y, A y + B y) x := is_frechet_deriv_at (λ y, f y + g y) (λ y, A y + B y) x :=
begin begin
@ -153,4 +305,23 @@ theorem frechet_diffable_at_add (A B : V → W) [is_bdd_linear_map A] [is_bdd_li
end frechet_deriv end frechet_deriv
/-section comp
variables {U V W : Type}
variables [HU : normed_vector_space U] [HV : normed_vector_space V] [HW : normed_vector_space W]
variables {f : V → W} {g : U → V}
variables {A : V → W} {B : U → V}
variables [HA : is_bdd_linear_map A] [HB : is_bdd_linear_map B]
variable {x : U}
include HU HV HW HA HB
theorem frechet_derivative_at_comp (Hg : is_frechet_deriv_at g B x) (Hf : is_frechet_deriv_at f A (g x)) :
@is_frechet_deriv_at _ _ _ _ (λ y, f (g y)) (λ y, A (B y)) !is_bdd_linear_map_comp x :=
begin
rewrite ↑is_frechet_deriv_at,
intros ε Hε,
end
end comp-/
end analysis end analysis