refactor(library/logic/core/eq): cleanup
This commit is contained in:
parent
b4d765ff2e
commit
9ac5f28b03
1 changed files with 34 additions and 34 deletions
|
@ -19,20 +19,20 @@ infix `=` := eq
|
|||
abbreviation rfl {A : Type} {a : A} := eq.refl a
|
||||
|
||||
namespace eq
|
||||
theorem id_refl {A : Type} {a : A} (H1 : a = a) : H1 = (eq.refl a) :=
|
||||
rfl
|
||||
theorem id_refl {A : Type} {a : A} (H1 : a = a) : H1 = (eq.refl a) :=
|
||||
rfl
|
||||
|
||||
theorem irrel {A : Type} {a b : A} (H1 H2 : a = b) : H1 = H2 :=
|
||||
rfl
|
||||
theorem irrel {A : Type} {a b : A} (H1 H2 : a = b) : H1 = H2 :=
|
||||
rfl
|
||||
|
||||
theorem subst {A : Type} {a b : A} {P : A → Prop} (H1 : a = b) (H2 : P a) : P b :=
|
||||
rec H2 H1
|
||||
theorem subst {A : Type} {a b : A} {P : A → Prop} (H1 : a = b) (H2 : P a) : P b :=
|
||||
rec H2 H1
|
||||
|
||||
theorem trans {A : Type} {a b c : A} (H1 : a = b) (H2 : b = c) : a = c :=
|
||||
subst H2 H1
|
||||
theorem trans {A : Type} {a b c : A} (H1 : a = b) (H2 : b = c) : a = c :=
|
||||
subst H2 H1
|
||||
|
||||
theorem symm {A : Type} {a b : A} (H : a = b) : b = a :=
|
||||
subst H (refl a)
|
||||
theorem symm {A : Type} {a b : A} (H : a = b) : b = a :=
|
||||
subst H (refl a)
|
||||
end eq
|
||||
|
||||
calc_subst eq.subst
|
||||
|
@ -47,33 +47,33 @@ end eq_ops
|
|||
open eq_ops
|
||||
|
||||
namespace eq
|
||||
-- eq_rec with arguments swapped, for transporting an element of a dependent type
|
||||
definition rec_on {A : Type} {a1 a2 : A} {B : A → Type} (H1 : a1 = a2) (H2 : B a1) : B a2 :=
|
||||
eq.rec H2 H1
|
||||
-- eq_rec with arguments swapped, for transporting an element of a dependent type
|
||||
definition rec_on {A : Type} {a1 a2 : A} {B : A → Type} (H1 : a1 = a2) (H2 : B a1) : B a2 :=
|
||||
eq.rec H2 H1
|
||||
|
||||
theorem rec_on_id {A : Type} {a : A} {B : A → Type} (H : a = a) (b : B a) : rec_on H b = b :=
|
||||
refl (rec_on rfl b)
|
||||
theorem rec_on_id {A : Type} {a : A} {B : A → Type} (H : a = a) (b : B a) : rec_on H b = b :=
|
||||
refl (rec_on rfl b)
|
||||
|
||||
theorem rec_id {A : Type} {a : A} {B : A → Type} (H : a = a) (b : B a) : rec b H = b :=
|
||||
rec_on_id H b
|
||||
theorem rec_id {A : Type} {a : A} {B : A → Type} (H : a = a) (b : B a) : rec b H = b :=
|
||||
rec_on_id H b
|
||||
|
||||
theorem rec_on_compose {A : Type} {a b c : A} {P : A → Type} (H1 : a = b) (H2 : b = c)
|
||||
theorem rec_on_compose {A : Type} {a b c : A} {P : A → Type} (H1 : a = b) (H2 : b = c)
|
||||
(u : P a) :
|
||||
rec_on H2 (rec_on H1 u) = rec_on (trans H1 H2) u :=
|
||||
(show ∀(H2 : b = c), rec_on H2 (rec_on H1 u) = rec_on (trans H1 H2) u,
|
||||
(show ∀(H2 : b = c), rec_on H2 (rec_on H1 u) = rec_on (trans H1 H2) u,
|
||||
from rec_on H2 (take (H2 : b = b), rec_on_id H2 _))
|
||||
H2
|
||||
H2
|
||||
end eq
|
||||
|
||||
theorem congr_fun {A : Type} {B : A → Type} {f g : Π x, B x} (H : f = g) (a : A) : f a = g a :=
|
||||
H ▸ eq.refl (f a)
|
||||
H ▸ rfl
|
||||
|
||||
theorem congr_arg {A : Type} {B : Type} {a b : A} (f : A → B) (H : a = b) : f a = f b :=
|
||||
H ▸ eq.refl (f a)
|
||||
H ▸ rfl
|
||||
|
||||
theorem congr {A : Type} {B : Type} {f g : A → B} {a b : A} (H1 : f = g) (H2 : a = b) :
|
||||
f a = g b :=
|
||||
H1 ▸ H2 ▸ eq.refl (f a)
|
||||
H1 ▸ H2 ▸ rfl
|
||||
|
||||
theorem equal_f {A : Type} {B : A → Type} {f g : Π x, B x} (H : f = g) : ∀x, f x = g x :=
|
||||
take x, congr_fun H x
|
||||
|
@ -106,17 +106,17 @@ definition ne [inline] {A : Type} (a b : A) := ¬(a = b)
|
|||
infix `≠` := ne
|
||||
|
||||
namespace ne
|
||||
theorem intro {A : Type} {a b : A} (H : a = b → false) : a ≠ b :=
|
||||
H
|
||||
theorem intro {A : Type} {a b : A} (H : a = b → false) : a ≠ b :=
|
||||
H
|
||||
|
||||
theorem elim {A : Type} {a b : A} (H1 : a ≠ b) (H2 : a = b) : false :=
|
||||
H1 H2
|
||||
theorem elim {A : Type} {a b : A} (H1 : a ≠ b) (H2 : a = b) : false :=
|
||||
H1 H2
|
||||
|
||||
theorem irrefl {A : Type} {a : A} (H : a ≠ a) : false :=
|
||||
H rfl
|
||||
theorem irrefl {A : Type} {a : A} (H : a ≠ a) : false :=
|
||||
H rfl
|
||||
|
||||
theorem symm {A : Type} {a b : A} (H : a ≠ b) : b ≠ a :=
|
||||
assume H1 : b = a, H (H1⁻¹)
|
||||
theorem symm {A : Type} {a b : A} (H : a ≠ b) : b ≠ a :=
|
||||
assume H1 : b = a, H (H1⁻¹)
|
||||
end ne
|
||||
|
||||
theorem a_neq_a_elim {A : Type} {a : A} (H : a ≠ a) : false :=
|
||||
|
|
Loading…
Reference in a new issue