refactor(builtin/macros): remove 'take', 'discharge' and 'instantiate' macros
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
This commit is contained in:
parent
bdec4c8799
commit
9c8026b86e
1 changed files with 4 additions and 22 deletions
|
@ -9,20 +9,6 @@
|
|||
-- typepos is the position of (A : Type) argument
|
||||
-- lambdapos is the position of the (Pi x : A, ...) argument
|
||||
--
|
||||
-- Example: suppose we invoke
|
||||
--
|
||||
-- binder_macro("take", Const({"forall", "intro"}), 3, 1, 3)
|
||||
--
|
||||
-- Then, the macro expression
|
||||
--
|
||||
-- take x y : Int, H x y
|
||||
--
|
||||
-- produces the expression
|
||||
--
|
||||
-- forall::intro Int _ (fun x : Int, forall::intro Int _ (fun y : Int, H x y))
|
||||
--
|
||||
-- The _ are placeholders (aka) holes that will be filled by the Lean
|
||||
-- elaborator.
|
||||
function binder_macro(name, f, farity, typepos, lambdapos)
|
||||
local precedence = 0
|
||||
macro(name, { macro_arg.Parameters, macro_arg.Comma, macro_arg.Expr },
|
||||
|
@ -52,15 +38,15 @@ end
|
|||
-- The following macro is used to create nary versions of operators such as mp.
|
||||
-- Example: suppose we invoke
|
||||
--
|
||||
-- nary_macro("mp'", Const("mp"), 4)
|
||||
-- nary_macro("eqmp'", Const("eqmp"), 4)
|
||||
--
|
||||
-- Then, the macro expression
|
||||
--
|
||||
-- mp' Foo H1 H2 H3
|
||||
-- eqmp' Foo H1 H2 H3
|
||||
--
|
||||
-- produces the expression
|
||||
--
|
||||
-- (mp (mp (mp Foo H1) H2) H3)
|
||||
-- (eqmp (eqmp (eqmp Foo H1) H2) H3)
|
||||
function nary_macro(name, f, farity)
|
||||
local bin_app = function(e1, e2)
|
||||
local args = {}
|
||||
|
@ -83,11 +69,7 @@ function nary_macro(name, f, farity)
|
|||
end)
|
||||
end
|
||||
|
||||
binder_macro("take", Const({"forall", "intro"}), 3, 1, 3)
|
||||
binder_macro("assume", Const("discharge"), 3, 1, 3)
|
||||
nary_macro("instantiate", Const({"forall", "elim"}), 4)
|
||||
|
||||
-- ExistsElim syntax-sugar
|
||||
-- exists::elim syntax-sugar
|
||||
-- Example:
|
||||
-- Assume we have the following two axioms
|
||||
-- Axiom Ax1: exists x y, P x y
|
||||
|
|
Loading…
Reference in a new issue