diff --git a/library/data/nat/parity.lean b/library/data/nat/parity.lean index 1faca7024..124ef351c 100644 --- a/library/data/nat/parity.lean +++ b/library/data/nat/parity.lean @@ -20,6 +20,12 @@ definition odd (n : nat) := ¬even n definition decidable_odd [instance] : ∀ n, decidable (odd n) := λ n, decidable_not +lemma even_of_dvd {n} : 2 ∣ n → even n := +mod_eq_zero_of_dvd + +lemma dvd_of_even {n} : even n → 2 ∣ n := +dvd_of_mod_eq_zero + lemma not_odd_zero : ¬ odd 0 := dec_trivial @@ -38,97 +44,96 @@ lemma odd_eq_not_even : ∀ n, odd n = ¬ even n := lemma odd_iff_not_even : ∀ n, odd n ↔ ¬ even n := λ n, !iff.refl -lemma odd_of_not_even : ∀ {n}, ¬ even n → odd n := -λ n h, iff.mp' !odd_iff_not_even h +lemma odd_of_not_even {n} : ¬ even n → odd n := +λ h, iff.mp' !odd_iff_not_even h -lemma even_of_not_odd : ∀ {n}, ¬ odd n → even n := -λ n h, not_not_elim (iff.mp (not_iff_not_of_iff !odd_iff_not_even) h) +lemma even_of_not_odd {n} : ¬ odd n → even n := +λ h, not_not_elim (iff.mp (not_iff_not_of_iff !odd_iff_not_even) h) -lemma not_odd_of_even : ∀ {n}, even n → ¬ odd n := -λ n h, iff.mp' (not_iff_not_of_iff !odd_iff_not_even) (not_not_intro h) +lemma not_odd_of_even {n} : even n → ¬ odd n := +λ h, iff.mp' (not_iff_not_of_iff !odd_iff_not_even) (not_not_intro h) -lemma not_even_of_odd : ∀ {n}, odd n → ¬ even n := -λ n h, iff.mp !odd_iff_not_even h +lemma not_even_of_odd {n} : odd n → ¬ even n := +λ h, iff.mp !odd_iff_not_even h -lemma odd_succ_of_even : ∀ {n}, even n → odd (succ n) := -begin - intro n, esimp [even, odd], intro h, rewrite [-add_one], - have h₁ : n mod 2 = 0 mod 2, from h, - have h₂ : (n+1) mod 2 = 1, from add_mod_eq_add_mod_right 1 h₁, - rewrite h₂, contradiction -end +lemma odd_succ_of_even {n} : even n → odd (succ n) := +λ h, by_contradiction (λ hn : ¬ odd (succ n), + assert 0 = 1, from calc + 0 = (n+1) mod 2 : even_of_not_odd hn + ... = 1 mod 2 : add_mod_eq_add_mod_right 1 h, + by contradiction) -lemma even_succ_of_odd : ∀ {n}, odd n → even (succ n) := -begin - intro n, esimp [even, odd], intro h, rewrite [-add_one], - have h₁ : n mod 2 < 2, from mod_lt n dec_trivial, - have h₂ : n mod 2 = 1, begin - revert h h₁, generalize (n mod 2), intro x, cases x, {intro h', exact absurd rfl h'}, cases a, - {intros, reflexivity}, - {intro h hl, exact absurd (lt_of_succ_lt_succ (lt_of_succ_lt_succ hl)) !not_lt_zero} - end, - have h₃ : n mod 2 = 1 mod 2, from h₂, - have h₄ : (n+1) mod 2 = 0, from add_mod_eq_add_mod_right 1 h₃, - rewrite h₄ -end +lemma eq_1_of_ne_0_lt_2 : ∀ {n : nat}, n ≠ 0 → n < 2 → n = 1 +| 0 h₁ h₂ := absurd rfl h₁ +| 1 h₁ h₂ := rfl +| (n+2) h₁ h₂ := absurd (lt_of_succ_lt_succ (lt_of_succ_lt_succ h₂)) !not_lt_zero -lemma odd_succ_succ_of_odd : ∀ {n}, odd n → odd (succ (succ n)) := -λ n h, odd_succ_of_even (even_succ_of_odd h) +lemma mod_eq_of_odd {n} : odd n → n mod 2 = 1 := +λ h, + have h₁ : ¬ n mod 2 = 0, from h, + have h₂ : n mod 2 < 2, from mod_lt n dec_trivial, + eq_1_of_ne_0_lt_2 h₁ h₂ -lemma even_succ_succ_of_even : ∀ {n}, even n → even (succ (succ n)) := -λ n h, even_succ_of_odd (odd_succ_of_even h) +lemma odd_of_mod_eq {n} : n mod 2 = 1 → odd n := +λ h, by_contradiction (λ hn, + assert h₁ : n mod 2 = 0, from even_of_not_odd hn, + by rewrite h at h₁; contradiction) -lemma even_of_odd_succ : ∀ {n}, odd (succ n) → even n := -λ n h, by_contradiction (λ he, +lemma even_succ_of_odd {n} : odd n → even (succ n) := +λ h, + have h₁ : n mod 2 = 1, from mod_eq_of_odd h, + have h₂ : n mod 2 = 1 mod 2, from mod_eq_of_odd h, + have h₃ : (n+1) mod 2 = 0, from add_mod_eq_add_mod_right 1 h₂, + h₃ + +lemma odd_succ_succ_of_odd {n} : odd n → odd (succ (succ n)) := +λ h, odd_succ_of_even (even_succ_of_odd h) + +lemma even_succ_succ_of_even {n} : even n → even (succ (succ n)) := +λ h, even_succ_of_odd (odd_succ_of_even h) + +lemma even_of_odd_succ {n} : odd (succ n) → even n := +λ h, by_contradiction (λ he, have h₁ : odd n, from odd_of_not_even he, have h₂ : even (succ n), from even_succ_of_odd h₁, absurd h₂ (not_even_of_odd h)) -lemma odd_of_even_succ : ∀ {n}, even (succ n) → odd n := -λ n h, by_contradiction (λ he, +lemma odd_of_even_succ {n} : even (succ n) → odd n := +λ h, by_contradiction (λ he, have h₁ : even n, from even_of_not_odd he, have h₂ : odd (succ n), from odd_succ_of_even h₁, absurd h (not_even_of_odd h₂)) -lemma even_of_even_succ_succ : ∀ {n}, even (succ (succ n)) → even n := -λ n h, even_of_odd_succ (odd_of_even_succ h) +lemma even_of_even_succ_succ {n} : even (succ (succ n)) → even n := +λ h, even_of_odd_succ (odd_of_even_succ h) -lemma odd_of_odd_succ_succ : ∀ {n}, odd (succ (succ n)) → odd n := -λ n h, odd_of_even_succ (even_of_odd_succ h) +lemma odd_of_odd_succ_succ {n} : odd (succ (succ n)) → odd n := +λ h, odd_of_even_succ (even_of_odd_succ h) -lemma even_or_odd : ∀ n, even n ∨ odd n -| 0 := or.inl even_zero -| (succ n) := or.elim (even_or_odd n) - (λ h : even n, or.inr (odd_succ_of_even h)) - (λ h : odd n, or.inl (even_succ_of_odd h)) +lemma dvd_of_odd {n} : odd n → 2 ∣ n+1 := +λ h, dvd_of_even (even_succ_of_odd h) -lemma exists_of_even : ∀ {n}, even n → ∃ k, n = 2*k -| 0 h := exists.intro 0 rfl -| 1 h := absurd h not_even_one -| (n+2) h := - obtain k (hk : n = 2*k), from exists_of_even (even_of_even_succ_succ h), - begin existsi (k+1), subst n end +lemma odd_of_dvd {n} : 2 ∣ n+1 → odd n := +λ h, odd_of_even_succ (even_of_dvd h) + +lemma even_or_odd : ∀ n, even n ∨ odd n := +λ n, by_cases + (λ h : even n, or.inl h) + (λ h : ¬ even n, or.inr (odd_of_not_even h)) + +lemma exists_of_even {n} : even n → ∃ k, n = 2*k := +λ h, exists_eq_mul_right_of_dvd (dvd_of_even h) lemma exists_of_odd : ∀ {n}, odd n → ∃ k, n = 2*k + 1 -| 0 h := absurd h not_odd_zero -| 1 h := exists.intro 0 rfl -| (n+2) h := - obtain k (hk : n = 2*k+1), from exists_of_odd (odd_of_odd_succ_succ h), - begin existsi (k+1), subst n end +| 0 h := absurd h not_odd_zero +| (n+1) h := + obtain k (hk : n = 2*k), from exists_of_even (even_of_odd_succ h), + exists.intro k (by subst n) -lemma even_of_exists : ∀ {n}, (∃ k, n = 2 * k) → even n -| 0 h := even_zero -| 1 h := - obtain k (hk : 1 = 2 * k), from h, - assert h₁ : 1 mod 2 = (2*k) mod 2, by rewrite hk, - begin rewrite mul_mod_right at h₁, contradiction end -| (n+2) h := - obtain k (hk : n + 2 = 2*k), from h, - have hk₁ : n = 2*(k - 1), from calc - n = 2*k - 2 : eq_sub_of_add_eq hk - ... = 2*(k - 1) : by rewrite mul_sub_left_distrib, - have ih : even n, from even_of_exists (exists.intro (k-1) hk₁), - even_succ_succ_of_even ih +lemma even_of_exists {n} : (∃ k, n = 2 * k) → even n := +λ h, obtain k (hk : n = 2 * k), from h, + have h₁ : 2 ∣ n, by subst n; apply dvd_mul_right, + even_of_dvd h₁ lemma odd_of_exists {n} : (∃ k, n = 2 * k + 1) → odd n := λ h, by_contradiction (λ hn,