refactor(library/unifier): group flex_rigid case related methods in a functional object
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
This commit is contained in:
parent
49070895d1
commit
9d13f634f3
1 changed files with 368 additions and 351 deletions
|
@ -1163,314 +1163,6 @@ struct unifier_fn {
|
|||
return is_eq_cnstr(c) && is_meta(cnstr_lhs_expr(c)) && is_meta(cnstr_rhs_expr(c));
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
\brief Given t
|
||||
<tt>Pi (x_1 : A_1) ... (x_n : A_n[x_1, ..., x_{n-1}]), B[x_1, ..., x_n]</tt>
|
||||
return
|
||||
<tt>fun (x_1 : A_1) ... (x_n : A_n[x_1, ..., x_{n-1}]), v[x_1, ... x_n]</tt>
|
||||
|
||||
\remark v has free variables.
|
||||
*/
|
||||
expr mk_lambda_for(expr const & t, expr const & v) {
|
||||
if (is_pi(t)) {
|
||||
return mk_lambda(binding_name(t), binding_domain(t), mk_lambda_for(binding_body(t), v), binding_info(t));
|
||||
} else {
|
||||
return v;
|
||||
}
|
||||
}
|
||||
|
||||
/** \see ensure_sufficient_args */
|
||||
expr ensure_sufficient_args_core(expr mtype, unsigned i, buffer<expr> const & margs, bool relax) {
|
||||
if (i == margs.size())
|
||||
return mtype;
|
||||
mtype = m_tc[relax]->ensure_pi(mtype);
|
||||
expr local = mk_local_for(mtype);
|
||||
expr body = instantiate(binding_body(mtype), local);
|
||||
return Pi(local, ensure_sufficient_args_core(body, i+1, margs, relax));
|
||||
}
|
||||
|
||||
/**
|
||||
\brief Make sure mtype is a Pi of size at least margs.size().
|
||||
If it is not, we use ensure_pi and (potentially) add new constaints to enforce it.
|
||||
*/
|
||||
expr ensure_sufficient_args(expr const & mtype, buffer<expr> const & margs, buffer<constraint> & cs,
|
||||
justification const & j, bool relax) {
|
||||
expr t = mtype;
|
||||
unsigned num = 0;
|
||||
while (is_pi(t)) {
|
||||
num++;
|
||||
t = binding_body(t);
|
||||
}
|
||||
if (num == margs.size())
|
||||
return mtype;
|
||||
lean_assert(!m_tc[relax]->next_cnstr()); // make sure there are no pending constraints
|
||||
// We must create a scope to make sure no constraints "leak" into the current state.
|
||||
type_checker::scope scope(*m_tc[relax]);
|
||||
auto new_mtype = ensure_sufficient_args_core(mtype, 0, margs, relax);
|
||||
while (auto c = m_tc[relax]->next_cnstr())
|
||||
cs.push_back(update_justification(*c, mk_composite1(c->get_justification(), j)));
|
||||
return new_mtype;
|
||||
}
|
||||
|
||||
/**
|
||||
\see mk_flex_rigid_app_cnstrs
|
||||
When using "imitation" for solving a constraint
|
||||
?m l_1 ... l_k =?= f a_1 ... a_n
|
||||
We say argument a_i is "easy" if
|
||||
1) it is a local constant
|
||||
2) there is only one l_j equal to a_i.
|
||||
3) none of the l_j's is of the form (?m ...)
|
||||
In our experiments, the vast majority (> 2/3 of all cases) of the arguments are easy.
|
||||
|
||||
margs contains l_1 ... l_k
|
||||
arg is the argument we are testing
|
||||
|
||||
Result: none if it is not an easy argument, and variable #k-i-1 if it is easy.
|
||||
The variable is the "solution".
|
||||
*/
|
||||
optional<expr> is_easy_flex_rigid_arg(buffer<expr> const & margs, expr const & arg) {
|
||||
if (!is_local(arg))
|
||||
return none_expr();
|
||||
optional<expr> v;
|
||||
unsigned num_margs = margs.size();
|
||||
for (unsigned j = 0; j < num_margs; j++) {
|
||||
if (is_meta(margs[j]))
|
||||
return none_expr();
|
||||
if (is_local(margs[j]) && mlocal_name(arg) == mlocal_name(margs[j])) {
|
||||
if (v)
|
||||
return none_expr(); // failed, there is more than one possibility
|
||||
v = mk_var(num_margs - j - 1);
|
||||
}
|
||||
}
|
||||
return v;
|
||||
}
|
||||
|
||||
/** \brief Check if term \c e (produced by an imitation step) is
|
||||
type correct, and store generated constraints in \c cs.
|
||||
Include \c j in all generated constraints */
|
||||
bool check_imitation(expr e, justification const & j, bool relax, buffer<constraint> & cs) {
|
||||
buffer<expr> ls;
|
||||
while (is_lambda(e)) {
|
||||
expr d = instantiate_rev(binding_domain(e), ls.size(), ls.data());
|
||||
expr l = mk_local(m_ngen.next(), binding_name(e), d, binding_info(e));
|
||||
ls.push_back(l);
|
||||
e = binding_body(e);
|
||||
}
|
||||
e = instantiate_rev(e, ls.size(), ls.data());;
|
||||
try {
|
||||
buffer<constraint> aux;
|
||||
m_tc[relax]->check(e, aux);
|
||||
for (auto c : aux) {
|
||||
cs.push_back(update_justification(c, mk_composite1(j, c.get_justification())));
|
||||
}
|
||||
return true;
|
||||
} catch (exception&) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
\brief Given
|
||||
m := a metavariable ?m
|
||||
margs := [a_1 ... a_k]
|
||||
rhs := (g b_1 ... b_n)
|
||||
Then create the constraints
|
||||
(?m_1 a_1 ... a_k) =?= b_1
|
||||
...
|
||||
(?m_n a_1 ... a_k) =?= b_n
|
||||
?m =?= fun (x_1 ... x_k), f (?m_1 x_1 ... x_k) ... (?m_n x_1 ... x_k)
|
||||
|
||||
Remark: we try to minimize the number of constraints (?m_i a_1 ... a_k) =?= b_i by detecting "easy" cases
|
||||
that can be solved immediately. See \c is_easy_flex_rigid_arg
|
||||
|
||||
Remark: The term f is:
|
||||
- g (if g is a constant), OR
|
||||
- variable (if g is a local constant equal to a_i)
|
||||
*/
|
||||
void mk_flex_rigid_app_cnstrs(expr const & m, buffer<expr> const & margs, expr const & f, expr const & rhs, justification const & j,
|
||||
buffer<constraints> & alts, bool relax) {
|
||||
lean_assert(is_metavar(m));
|
||||
lean_assert(is_app(rhs));
|
||||
lean_assert(is_constant(f) || is_var(f));
|
||||
buffer<constraint> cs;
|
||||
expr mtype = mlocal_type(m);
|
||||
mtype = ensure_sufficient_args(mtype, margs, cs, j, relax);
|
||||
buffer<expr> rargs;
|
||||
get_app_args(rhs, rargs);
|
||||
buffer<expr> sargs;
|
||||
for (expr const & rarg : rargs) {
|
||||
if (auto v = is_easy_flex_rigid_arg(margs, rarg)) {
|
||||
sargs.push_back(*v);
|
||||
} else {
|
||||
expr maux = mk_aux_metavar_for(m_ngen, mtype);
|
||||
cs.push_back(mk_eq_cnstr(mk_app(maux, margs), rarg, j, relax));
|
||||
sargs.push_back(mk_app_vars(maux, margs.size()));
|
||||
}
|
||||
}
|
||||
expr v = mk_app(f, sargs);
|
||||
v = mk_lambda_for(mtype, v);
|
||||
if (check_imitation(v, j, relax, cs)) {
|
||||
cs.push_back(mk_eq_cnstr(m, v, j, relax));
|
||||
alts.push_back(to_list(cs.begin(), cs.end()));
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
\brief Given
|
||||
m := a metavariable ?m
|
||||
margs := [a_1 ... a_k]
|
||||
rhs := (fun/Pi (y : A), B y)
|
||||
Then create the constraints
|
||||
(?m_1 a_1 ... a_k) =?= A
|
||||
(?m_2 a_1 ... a_k l) =?= B l
|
||||
?m =?= fun (x_1 ... x_k), fun/Pi (y : ?m_1 x_1 ... x_k), ?m_2 x_1 ... x_k y
|
||||
where l is a fresh local constant.
|
||||
*/
|
||||
void mk_bindings_imitation(expr const & m, buffer<expr> const & margs, expr const & rhs, justification const & j,
|
||||
buffer<constraints> & alts, bool relax) {
|
||||
lean_assert(is_metavar(m));
|
||||
lean_assert(is_binding(rhs));
|
||||
buffer<constraint> cs;
|
||||
expr mtype = mlocal_type(m);
|
||||
mtype = ensure_sufficient_args(mtype, margs, cs, j, relax);
|
||||
expr maux1 = mk_aux_metavar_for(m_ngen, mtype);
|
||||
cs.push_back(mk_eq_cnstr(mk_app(maux1, margs), binding_domain(rhs), j, relax));
|
||||
expr dontcare;
|
||||
expr tmp_pi = mk_pi(binding_name(rhs), mk_app_vars(maux1, margs.size()), dontcare); // trick for "extending" the context
|
||||
expr mtype2 = replace_range(mtype, tmp_pi); // trick for "extending" the context
|
||||
expr maux2 = mk_aux_metavar_for(m_ngen, mtype2);
|
||||
expr new_local = mk_local_for(rhs);
|
||||
cs.push_back(mk_eq_cnstr(mk_app(mk_app(maux2, margs), new_local), instantiate(binding_body(rhs), new_local), j, relax));
|
||||
expr v = update_binding(rhs, mk_app_vars(maux1, margs.size()), mk_app_vars(maux2, margs.size() + 1));
|
||||
v = mk_lambda_for(mtype, v);
|
||||
if (check_imitation(v, j, relax, cs)) {
|
||||
cs.push_back(mk_eq_cnstr(m, v, j, relax));
|
||||
alts.push_back(to_list(cs.begin(), cs.end()));
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
\brief Given
|
||||
m := a metavariable ?m
|
||||
rhs := sort, constant
|
||||
Then solve (?m a_1 ... a_k) =?= rhs, by returning the constraint
|
||||
?m =?= fun (x1 ... x_k), rhs
|
||||
*/
|
||||
void mk_simple_imitation(expr const & m, expr const & rhs, justification const & j, buffer<constraints> & alts, bool relax) {
|
||||
lean_assert(is_metavar(m));
|
||||
lean_assert(is_sort(rhs) || is_constant(rhs));
|
||||
expr const & mtype = mlocal_type(m);
|
||||
buffer<constraint> cs;
|
||||
cs.push_back(mk_eq_cnstr(m, mk_lambda_for(mtype, rhs), j, relax));
|
||||
alts.push_back(to_list(cs.begin(), cs.end()));
|
||||
}
|
||||
|
||||
/**
|
||||
\brief Given
|
||||
m := a metavariable ?m
|
||||
margs := [a_1 ... a_k]
|
||||
rhs := M(b_1 ... b_n) where M is a macro with arguments b_1 ... b_n
|
||||
Then create the constraints
|
||||
(?m_1 a_1 ... a_k) =?= b_1
|
||||
...
|
||||
(?m_n a_1 ... a_k) =?= b_n
|
||||
?m =?= fun (x_1 ... x_k), M((?m_1 x_1 ... x_k) ... (?m_n x_1 ... x_k))
|
||||
*/
|
||||
void mk_macro_imitation(expr const & m, buffer<expr> const & margs, expr const & rhs, justification const & j,
|
||||
buffer<constraints> & alts, bool relax) {
|
||||
lean_assert(is_metavar(m));
|
||||
lean_assert(is_macro(rhs));
|
||||
buffer<constraint> cs;
|
||||
expr mtype = mlocal_type(m);
|
||||
mtype = ensure_sufficient_args(mtype, margs, cs, j, relax);
|
||||
// create an auxiliary metavariable for each macro argument
|
||||
buffer<expr> sargs;
|
||||
for (unsigned i = 0; i < macro_num_args(rhs); i++) {
|
||||
expr maux = mk_aux_metavar_for(m_ngen, mtype);
|
||||
cs.push_back(mk_eq_cnstr(mk_app(maux, margs), macro_arg(rhs, i), j, relax));
|
||||
sargs.push_back(mk_app_vars(maux, margs.size()));
|
||||
}
|
||||
expr v = mk_macro(macro_def(rhs), sargs.size(), sargs.data());
|
||||
v = mk_lambda_for(mtype, v);
|
||||
if (check_imitation(v, j, relax, cs)) {
|
||||
cs.push_back(mk_eq_cnstr(m, v, j, relax));
|
||||
alts.push_back(to_list(cs.begin(), cs.end()));
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
Given,
|
||||
m := a metavariable ?m
|
||||
margs := [a_1 ... a_k]
|
||||
We say a unification problem (?m a_1 ... a_k) =?= rhs uses "simple nonlocal i-th projection" when
|
||||
|
||||
1) rhs is not a local constant
|
||||
2) is_def_eq(a_i, rhs) does not fail
|
||||
|
||||
In this case, we add
|
||||
a_i =?= rhs
|
||||
?m =?= fun x_1 ... x_k, x_i
|
||||
to alts as a possible solution.
|
||||
*/
|
||||
void mk_simple_nonlocal_projection(expr const & m, buffer<expr> const & margs, unsigned i, expr const & rhs, justification const & j,
|
||||
buffer<constraints> & alts, bool relax) {
|
||||
expr const & mtype = mlocal_type(m);
|
||||
unsigned vidx = margs.size() - i - 1;
|
||||
expr const & marg = margs[i];
|
||||
buffer<constraint> cs;
|
||||
auto new_mtype = ensure_sufficient_args(mtype, margs, cs, j, relax);
|
||||
// Remark: we should not use mk_eq_cnstr(marg, rhs, j) since is_def_eq may be able to reduce them.
|
||||
// The unifier assumes the eq constraints are reduced.
|
||||
if (m_tc[relax]->is_def_eq_types(marg, rhs, j, cs) &&
|
||||
m_tc[relax]->is_def_eq(marg, rhs, j, cs)) {
|
||||
expr v = mk_lambda_for(new_mtype, mk_var(vidx));
|
||||
cs.push_back(mk_eq_cnstr(m, v, j, relax));
|
||||
alts.push_back(to_list(cs.begin(), cs.end()));
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
Given,
|
||||
m := a metavariable ?m
|
||||
margs := [a_1 ... a_k]
|
||||
We say a unification problem (?m a_1 ... a_k) =?= rhs uses "simple projections" when
|
||||
|
||||
If (rhs and a_i are *not* local constants) OR (rhs is a local constant and a_i is a metavariable application),
|
||||
then we add the constraints
|
||||
a_i =?= rhs
|
||||
?m =?= fun x_1 ... x_k, x_i
|
||||
to alts as a possible solution.
|
||||
|
||||
If rhs is a local constant and a_i == rhs, then we add the constraint
|
||||
?m =?= fun x_1 ... x_k, x_i
|
||||
to alts as a possible solution when a_i is the same local constant or a metavariable application
|
||||
|
||||
*/
|
||||
void mk_simple_projections(expr const & m, buffer<expr> const & margs, expr const & rhs, justification const & j,
|
||||
buffer<constraints> & alts, bool relax) {
|
||||
lean_assert(is_metavar(m));
|
||||
lean_assert(!is_meta(rhs));
|
||||
expr const & mtype = mlocal_type(m);
|
||||
unsigned i = margs.size();
|
||||
while (i > 0) {
|
||||
unsigned vidx = margs.size() - i;
|
||||
--i;
|
||||
expr const & marg = margs[i];
|
||||
if ((!is_local(marg) && !is_local(rhs)) || (is_meta(marg) && is_local(rhs))) {
|
||||
// if rhs is not local, then we only add projections for the nonlocal arguments of lhs
|
||||
mk_simple_nonlocal_projection(m, margs, i, rhs, j, alts, relax);
|
||||
} else if (is_local(marg) && is_local(rhs) && mlocal_name(marg) == mlocal_name(rhs)) {
|
||||
// if the argument is local, and rhs is equal to it, then we also add a projection
|
||||
buffer<constraint> cs;
|
||||
auto new_mtype = ensure_sufficient_args(mtype, margs, cs, j, relax);
|
||||
expr v = mk_lambda_for(new_mtype, mk_var(vidx));
|
||||
cs.push_back(mk_eq_cnstr(m, v, j, relax));
|
||||
alts.push_back(to_list(cs.begin(), cs.end()));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/** \brief Append the auxiliary constraints \c aux to each alternative in \c alts */
|
||||
void append_auxiliary_constraints(buffer<constraints> & alts, list<constraint> const & aux) {
|
||||
if (is_nil(aux))
|
||||
|
@ -1479,51 +1171,376 @@ struct unifier_fn {
|
|||
cs = append(aux, cs);
|
||||
}
|
||||
|
||||
void process_flex_rigid_core(expr const & lhs, expr const & rhs, justification const & j, bool relax, buffer<constraints> & alts) {
|
||||
buffer<expr> margs;
|
||||
expr m = get_app_args(lhs, margs);
|
||||
switch (rhs.kind()) {
|
||||
case expr_kind::Var: case expr_kind::Meta:
|
||||
lean_unreachable(); // LCOV_EXCL_LINE
|
||||
case expr_kind::Local:
|
||||
mk_simple_projections(m, margs, rhs, j, alts, relax);
|
||||
break;
|
||||
case expr_kind::Sort: case expr_kind::Constant:
|
||||
if (!m_pattern)
|
||||
mk_simple_projections(m, margs, rhs, j, alts, relax);
|
||||
mk_simple_imitation(m, rhs, j, alts, relax);
|
||||
break;
|
||||
case expr_kind::Pi: case expr_kind::Lambda:
|
||||
if (!m_pattern)
|
||||
mk_simple_projections(m, margs, rhs, j, alts, relax);
|
||||
mk_bindings_imitation(m, margs, rhs, j, alts, relax);
|
||||
break;
|
||||
case expr_kind::Macro:
|
||||
if (!m_pattern)
|
||||
mk_simple_projections(m, margs, rhs, j, alts, relax);
|
||||
mk_macro_imitation(m, margs, rhs, j, alts, relax);
|
||||
break;
|
||||
case expr_kind::App: {
|
||||
expr const & f = get_app_fn(rhs);
|
||||
if (is_local(f)) {
|
||||
unsigned i = margs.size();
|
||||
while (i > 0) {
|
||||
unsigned vidx = margs.size() - i;
|
||||
--i;
|
||||
expr const & marg = margs[i];
|
||||
if (is_local(marg) && mlocal_name(marg) == mlocal_name(f))
|
||||
mk_flex_rigid_app_cnstrs(m, margs, mk_var(vidx), rhs, j, alts, relax);
|
||||
else if (!m_pattern)
|
||||
mk_simple_nonlocal_projection(m, margs, i, rhs, j, alts, relax);
|
||||
}
|
||||
/** \brief Auxiliary functional object for implementing process_flex_rigid_core */
|
||||
class flex_rigid_core_fn {
|
||||
unifier_fn & u;
|
||||
expr const & lhs;
|
||||
buffer<expr> margs;
|
||||
expr const & m;
|
||||
expr const & rhs;
|
||||
justification const & j;
|
||||
bool relax;
|
||||
|
||||
buffer<constraints> & alts; // result: alternatives
|
||||
|
||||
/**
|
||||
\brief Given t
|
||||
<tt>Pi (x_1 : A_1) ... (x_n : A_n[x_1, ..., x_{n-1}]), B[x_1, ..., x_n]</tt>
|
||||
return
|
||||
<tt>fun (x_1 : A_1) ... (x_n : A_n[x_1, ..., x_{n-1}]), v[x_1, ... x_n]</tt>
|
||||
|
||||
\remark v has free variables.
|
||||
*/
|
||||
static expr mk_lambda_for(expr const & t, expr const & v) {
|
||||
if (is_pi(t)) {
|
||||
return mk_lambda(binding_name(t), binding_domain(t), mk_lambda_for(binding_body(t), v), binding_info(t));
|
||||
} else {
|
||||
lean_assert(is_constant(f));
|
||||
if (!m_pattern)
|
||||
mk_simple_projections(m, margs, rhs, j, alts, relax);
|
||||
mk_flex_rigid_app_cnstrs(m, margs, f, rhs, j, alts, relax);
|
||||
return v;
|
||||
}
|
||||
break;
|
||||
}}
|
||||
}
|
||||
|
||||
/** \brief Copy pending constraints in u.m_tc[relax] to cs and append justification j to them */
|
||||
void copy_pending_constraints(buffer<constraint> & cs) {
|
||||
while (auto c = u.m_tc[relax]->next_cnstr())
|
||||
cs.push_back(update_justification(*c, mk_composite1(c->get_justification(), j)));
|
||||
}
|
||||
|
||||
/** \see ensure_sufficient_args */
|
||||
expr ensure_sufficient_args_core(expr mtype, unsigned i) {
|
||||
if (i == margs.size())
|
||||
return mtype;
|
||||
mtype = u.m_tc[relax]->ensure_pi(mtype);
|
||||
expr local = u.mk_local_for(mtype);
|
||||
expr body = instantiate(binding_body(mtype), local);
|
||||
return Pi(local, ensure_sufficient_args_core(body, i+1));
|
||||
}
|
||||
|
||||
/** \brief Make sure mtype is a Pi of size at least margs.size().
|
||||
If it is not, we use ensure_pi and (potentially) add new constaints to enforce it.
|
||||
*/
|
||||
expr ensure_sufficient_args(expr const & mtype, buffer<constraint> & cs) {
|
||||
expr t = mtype;
|
||||
unsigned num = 0;
|
||||
while (is_pi(t)) {
|
||||
num++;
|
||||
t = binding_body(t);
|
||||
}
|
||||
if (num == margs.size())
|
||||
return mtype;
|
||||
lean_assert(!u.m_tc[relax]->next_cnstr()); // make sure there are no pending constraints
|
||||
// We must create a scope to make sure no constraints "leak" into the current state.
|
||||
type_checker::scope scope(*u.m_tc[relax]);
|
||||
auto new_mtype = ensure_sufficient_args_core(mtype, 0);
|
||||
copy_pending_constraints(cs);
|
||||
return new_mtype;
|
||||
}
|
||||
|
||||
/**
|
||||
\brief Given
|
||||
m := a metavariable ?m
|
||||
rhs := sort, constant
|
||||
Then solve (?m a_1 ... a_k) =?= rhs, by returning the constraint
|
||||
?m =?= fun (x1 ... x_k), rhs
|
||||
*/
|
||||
void mk_simple_imitation() {
|
||||
lean_assert(is_metavar(m));
|
||||
lean_assert(is_sort(rhs) || is_constant(rhs));
|
||||
expr const & mtype = mlocal_type(m);
|
||||
buffer<constraint> cs;
|
||||
cs.push_back(mk_eq_cnstr(m, mk_lambda_for(mtype, rhs), j, relax));
|
||||
alts.push_back(to_list(cs.begin(), cs.end()));
|
||||
}
|
||||
|
||||
/**
|
||||
Given,
|
||||
m := a metavariable ?m
|
||||
margs := [a_1 ... a_k]
|
||||
We say a unification problem (?m a_1 ... a_k) =?= rhs uses "simple nonlocal i-th projection" when
|
||||
|
||||
1) rhs is not a local constant
|
||||
2) is_def_eq(a_i, rhs) does not fail
|
||||
|
||||
In this case, we add
|
||||
a_i =?= rhs
|
||||
?m =?= fun x_1 ... x_k, x_i
|
||||
to alts as a possible solution.
|
||||
*/
|
||||
void mk_simple_nonlocal_projection(unsigned i) {
|
||||
expr const & mtype = mlocal_type(m);
|
||||
unsigned vidx = margs.size() - i - 1;
|
||||
expr const & marg = margs[i];
|
||||
buffer<constraint> cs;
|
||||
auto new_mtype = ensure_sufficient_args(mtype, cs);
|
||||
// Remark: we should not use mk_eq_cnstr(marg, rhs, j) since is_def_eq may be able to reduce them.
|
||||
// The unifier assumes the eq constraints are reduced.
|
||||
if (u.m_tc[relax]->is_def_eq_types(marg, rhs, j, cs) &&
|
||||
u.m_tc[relax]->is_def_eq(marg, rhs, j, cs)) {
|
||||
expr v = mk_lambda_for(new_mtype, mk_var(vidx));
|
||||
cs.push_back(mk_eq_cnstr(m, v, j, relax));
|
||||
alts.push_back(to_list(cs.begin(), cs.end()));
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
Given,
|
||||
m := a metavariable ?m
|
||||
margs := [a_1 ... a_k]
|
||||
We say a unification problem (?m a_1 ... a_k) =?= rhs uses "simple projections" when
|
||||
|
||||
If (rhs and a_i are *not* local constants) OR (rhs is a local constant and a_i is a metavariable application),
|
||||
then we add the constraints
|
||||
a_i =?= rhs
|
||||
?m =?= fun x_1 ... x_k, x_i
|
||||
to alts as a possible solution.
|
||||
|
||||
If rhs is a local constant and a_i == rhs, then we add the constraint
|
||||
?m =?= fun x_1 ... x_k, x_i
|
||||
to alts as a possible solution when a_i is the same local constant or a metavariable application
|
||||
*/
|
||||
void mk_simple_projections() {
|
||||
lean_assert(is_metavar(m));
|
||||
lean_assert(!is_meta(rhs));
|
||||
expr const & mtype = mlocal_type(m);
|
||||
unsigned i = margs.size();
|
||||
while (i > 0) {
|
||||
unsigned vidx = margs.size() - i;
|
||||
--i;
|
||||
expr const & marg = margs[i];
|
||||
if ((!is_local(marg) && !is_local(rhs)) || (is_meta(marg) && is_local(rhs))) {
|
||||
// if rhs is not local, then we only add projections for the nonlocal arguments of lhs
|
||||
mk_simple_nonlocal_projection(i);
|
||||
} else if (is_local(marg) && is_local(rhs) && mlocal_name(marg) == mlocal_name(rhs)) {
|
||||
// if the argument is local, and rhs is equal to it, then we also add a projection
|
||||
buffer<constraint> cs;
|
||||
auto new_mtype = ensure_sufficient_args(mtype, cs);
|
||||
expr v = mk_lambda_for(new_mtype, mk_var(vidx));
|
||||
cs.push_back(mk_eq_cnstr(m, v, j, relax));
|
||||
alts.push_back(to_list(cs.begin(), cs.end()));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
\see mk_flex_rigid_app_cnstrs
|
||||
When using "imitation" for solving a constraint
|
||||
?m l_1 ... l_k =?= f a_1 ... a_n
|
||||
We say argument a_i is "easy" if
|
||||
1) it is a local constant
|
||||
2) there is only one l_j equal to a_i.
|
||||
3) none of the l_j's is of the form (?m ...)
|
||||
In our experiments, the vast majority (> 2/3 of all cases) of the arguments are easy.
|
||||
|
||||
margs contains l_1 ... l_k
|
||||
arg is the argument we are testing
|
||||
|
||||
Result: none if it is not an easy argument, and variable #k-i-1 if it is easy.
|
||||
The variable is the "solution".
|
||||
*/
|
||||
optional<expr> is_easy_flex_rigid_arg(expr const & arg) {
|
||||
if (!is_local(arg))
|
||||
return none_expr();
|
||||
optional<expr> v;
|
||||
unsigned num_margs = margs.size();
|
||||
for (unsigned j = 0; j < num_margs; j++) {
|
||||
if (is_meta(margs[j]))
|
||||
return none_expr();
|
||||
if (is_local(margs[j]) && mlocal_name(arg) == mlocal_name(margs[j])) {
|
||||
if (v)
|
||||
return none_expr(); // failed, there is more than one possibility
|
||||
v = mk_var(num_margs - j - 1);
|
||||
}
|
||||
}
|
||||
return v;
|
||||
}
|
||||
|
||||
/** \brief Check if term \c e (produced by an imitation step) is
|
||||
type correct, and store generated constraints in \c cs.
|
||||
Include \c j in all generated constraints */
|
||||
bool check_imitation(expr e, buffer<constraint> & cs) {
|
||||
buffer<expr> ls;
|
||||
while (is_lambda(e)) {
|
||||
expr d = instantiate_rev(binding_domain(e), ls.size(), ls.data());
|
||||
expr l = mk_local(u.m_ngen.next(), binding_name(e), d, binding_info(e));
|
||||
ls.push_back(l);
|
||||
e = binding_body(e);
|
||||
}
|
||||
e = instantiate_rev(e, ls.size(), ls.data());;
|
||||
try {
|
||||
buffer<constraint> aux;
|
||||
u.m_tc[relax]->check(e, aux);
|
||||
for (auto c : aux) {
|
||||
cs.push_back(update_justification(c, mk_composite1(j, c.get_justification())));
|
||||
}
|
||||
return true;
|
||||
} catch (exception&) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
\brief Given
|
||||
m := a metavariable ?m
|
||||
margs := [a_1 ... a_k]
|
||||
rhs := (g b_1 ... b_n)
|
||||
Then create the constraints
|
||||
(?m_1 a_1 ... a_k) =?= b_1
|
||||
...
|
||||
(?m_n a_1 ... a_k) =?= b_n
|
||||
?m =?= fun (x_1 ... x_k), f (?m_1 x_1 ... x_k) ... (?m_n x_1 ... x_k)
|
||||
|
||||
Remark: we try to minimize the number of constraints (?m_i a_1 ... a_k) =?= b_i by detecting "easy" cases
|
||||
that can be solved immediately. See \c is_easy_flex_rigid_arg
|
||||
|
||||
Remark: The term f is:
|
||||
- g (if g is a constant), OR
|
||||
- variable (if g is a local constant equal to a_i)
|
||||
*/
|
||||
void mk_flex_rigid_app_cnstrs(expr const & f) {
|
||||
lean_assert(is_metavar(m));
|
||||
lean_assert(is_app(rhs));
|
||||
lean_assert(is_constant(f) || is_var(f));
|
||||
buffer<constraint> cs;
|
||||
expr mtype = mlocal_type(m);
|
||||
mtype = ensure_sufficient_args(mtype, cs);
|
||||
buffer<expr> rargs;
|
||||
get_app_args(rhs, rargs);
|
||||
buffer<expr> sargs;
|
||||
for (expr const & rarg : rargs) {
|
||||
if (auto v = is_easy_flex_rigid_arg(rarg)) {
|
||||
sargs.push_back(*v);
|
||||
} else {
|
||||
expr maux = mk_aux_metavar_for(u.m_ngen, mtype);
|
||||
cs.push_back(mk_eq_cnstr(mk_app(maux, margs), rarg, j, relax));
|
||||
sargs.push_back(mk_app_vars(maux, margs.size()));
|
||||
}
|
||||
}
|
||||
expr v = mk_app(f, sargs);
|
||||
v = mk_lambda_for(mtype, v);
|
||||
if (check_imitation(v, cs)) {
|
||||
cs.push_back(mk_eq_cnstr(m, v, j, relax));
|
||||
alts.push_back(to_list(cs.begin(), cs.end()));
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
\brief Given
|
||||
m := a metavariable ?m
|
||||
margs := [a_1 ... a_k]
|
||||
rhs := (fun/Pi (y : A), B y)
|
||||
Then create the constraints
|
||||
(?m_1 a_1 ... a_k) =?= A
|
||||
(?m_2 a_1 ... a_k l) =?= B l
|
||||
?m =?= fun (x_1 ... x_k), fun/Pi (y : ?m_1 x_1 ... x_k), ?m_2 x_1 ... x_k y
|
||||
where l is a fresh local constant.
|
||||
*/
|
||||
void mk_bindings_imitation() {
|
||||
lean_assert(is_metavar(m));
|
||||
lean_assert(is_binding(rhs));
|
||||
buffer<constraint> cs;
|
||||
expr mtype = mlocal_type(m);
|
||||
mtype = ensure_sufficient_args(mtype, cs);
|
||||
expr maux1 = mk_aux_metavar_for(u.m_ngen, mtype);
|
||||
cs.push_back(mk_eq_cnstr(mk_app(maux1, margs), binding_domain(rhs), j, relax));
|
||||
expr dontcare;
|
||||
expr tmp_pi = mk_pi(binding_name(rhs), mk_app_vars(maux1, margs.size()), dontcare); // trick for "extending" the context
|
||||
expr mtype2 = replace_range(mtype, tmp_pi); // trick for "extending" the context
|
||||
expr maux2 = mk_aux_metavar_for(u.m_ngen, mtype2);
|
||||
expr new_local = u.mk_local_for(rhs);
|
||||
cs.push_back(mk_eq_cnstr(mk_app(mk_app(maux2, margs), new_local), instantiate(binding_body(rhs), new_local), j, relax));
|
||||
expr v = update_binding(rhs, mk_app_vars(maux1, margs.size()), mk_app_vars(maux2, margs.size() + 1));
|
||||
v = mk_lambda_for(mtype, v);
|
||||
if (check_imitation(v, cs)) {
|
||||
cs.push_back(mk_eq_cnstr(m, v, j, relax));
|
||||
alts.push_back(to_list(cs.begin(), cs.end()));
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
\brief Given
|
||||
m := a metavariable ?m
|
||||
margs := [a_1 ... a_k]
|
||||
rhs := M(b_1 ... b_n) where M is a macro with arguments b_1 ... b_n
|
||||
Then create the constraints
|
||||
(?m_1 a_1 ... a_k) =?= b_1
|
||||
...
|
||||
(?m_n a_1 ... a_k) =?= b_n
|
||||
?m =?= fun (x_1 ... x_k), M((?m_1 x_1 ... x_k) ... (?m_n x_1 ... x_k))
|
||||
*/
|
||||
void mk_macro_imitation() {
|
||||
lean_assert(is_metavar(m));
|
||||
lean_assert(is_macro(rhs));
|
||||
buffer<constraint> cs;
|
||||
expr mtype = mlocal_type(m);
|
||||
mtype = ensure_sufficient_args(mtype, cs);
|
||||
// create an auxiliary metavariable for each macro argument
|
||||
buffer<expr> sargs;
|
||||
for (unsigned i = 0; i < macro_num_args(rhs); i++) {
|
||||
expr maux = mk_aux_metavar_for(u.m_ngen, mtype);
|
||||
cs.push_back(mk_eq_cnstr(mk_app(maux, margs), macro_arg(rhs, i), j, relax));
|
||||
sargs.push_back(mk_app_vars(maux, margs.size()));
|
||||
}
|
||||
expr v = mk_macro(macro_def(rhs), sargs.size(), sargs.data());
|
||||
v = mk_lambda_for(mtype, v);
|
||||
if (check_imitation(v, cs)) {
|
||||
cs.push_back(mk_eq_cnstr(m, v, j, relax));
|
||||
alts.push_back(to_list(cs.begin(), cs.end()));
|
||||
}
|
||||
}
|
||||
|
||||
public:
|
||||
flex_rigid_core_fn(unifier_fn & _u, expr const & _lhs, expr const & _rhs,
|
||||
justification const & _j, bool _relax, buffer<constraints> & _alts):
|
||||
u(_u), lhs(_lhs), m(get_app_args(lhs, margs)), rhs(_rhs), j(_j), relax(_relax), alts(_alts) {}
|
||||
|
||||
void operator()() {
|
||||
switch (rhs.kind()) {
|
||||
case expr_kind::Var: case expr_kind::Meta:
|
||||
lean_unreachable(); // LCOV_EXCL_LINE
|
||||
case expr_kind::Local:
|
||||
mk_simple_projections();
|
||||
break;
|
||||
case expr_kind::Sort: case expr_kind::Constant:
|
||||
if (!u.m_pattern)
|
||||
mk_simple_projections();
|
||||
mk_simple_imitation();
|
||||
break;
|
||||
case expr_kind::Pi: case expr_kind::Lambda:
|
||||
if (!u.m_pattern)
|
||||
mk_simple_projections();
|
||||
mk_bindings_imitation();
|
||||
break;
|
||||
case expr_kind::Macro:
|
||||
if (!u.m_pattern)
|
||||
mk_simple_projections();
|
||||
mk_macro_imitation();
|
||||
break;
|
||||
case expr_kind::App: {
|
||||
expr const & f = get_app_fn(rhs);
|
||||
if (is_local(f)) {
|
||||
unsigned i = margs.size();
|
||||
while (i > 0) {
|
||||
unsigned vidx = margs.size() - i;
|
||||
--i;
|
||||
expr const & marg = margs[i];
|
||||
if (is_local(marg) && mlocal_name(marg) == mlocal_name(f))
|
||||
mk_flex_rigid_app_cnstrs(mk_var(vidx));
|
||||
else if (!u.m_pattern)
|
||||
mk_simple_nonlocal_projection(i);
|
||||
}
|
||||
} else {
|
||||
lean_assert(is_constant(f));
|
||||
if (!u.m_pattern)
|
||||
mk_simple_projections();
|
||||
mk_flex_rigid_app_cnstrs(f);
|
||||
}
|
||||
break;
|
||||
}}
|
||||
}
|
||||
};
|
||||
|
||||
void process_flex_rigid_core(expr const & lhs, expr const & rhs, justification const & j, bool relax,
|
||||
buffer<constraints> & alts) {
|
||||
flex_rigid_core_fn(*this, lhs, rhs, j, relax, alts)();
|
||||
}
|
||||
|
||||
/** \brief When lhs is an application (f ...), make sure that if any argument that is reducible to a
|
||||
|
|
Loading…
Reference in a new issue