Add theorems Truth, EqMP and EqTElim
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
This commit is contained in:
parent
84f4a32c0e
commit
9d6b421be9
2 changed files with 30 additions and 5 deletions
|
@ -152,6 +152,9 @@ MK_CONSTANT(subst_fn, name("subst"));
|
||||||
MK_CONSTANT(symm_fn, name("symm"));
|
MK_CONSTANT(symm_fn, name("symm"));
|
||||||
MK_CONSTANT(trans_fn, name("trans"));
|
MK_CONSTANT(trans_fn, name("trans"));
|
||||||
MK_CONSTANT(congr_fn, name("congr"));
|
MK_CONSTANT(congr_fn, name("congr"));
|
||||||
|
MK_CONSTANT(eq_mp_fn, name("eq_mp"));
|
||||||
|
MK_CONSTANT(truth, name("truth"));
|
||||||
|
MK_CONSTANT(eqt_elim_fn, name("eqt_elim"));
|
||||||
MK_CONSTANT(ext_fn, name("ext"));
|
MK_CONSTANT(ext_fn, name("ext"));
|
||||||
MK_CONSTANT(foralle_fn, name("foralle"));
|
MK_CONSTANT(foralle_fn, name("foralle"));
|
||||||
MK_CONSTANT(foralli_fn, name("foralli"));
|
MK_CONSTANT(foralli_fn, name("foralli"));
|
||||||
|
@ -186,7 +189,7 @@ void add_basic_theory(environment & env) {
|
||||||
// or(x, y) = (if bool x true y)
|
// or(x, y) = (if bool x true y)
|
||||||
env.add_definition(or_fn_name, p2, Fun({{x, Bool}, {y, Bool}}, bIf(x, False, y)));
|
env.add_definition(or_fn_name, p2, Fun({{x, Bool}, {y, Bool}}, bIf(x, False, y)));
|
||||||
// not(x) = (if bool x false true)
|
// not(x) = (if bool x false true)
|
||||||
env.add_definition(not_fn_name, p1, Fun({{x, Bool}}, bIf(x, False, True)));
|
env.add_definition(not_fn_name, p1, Fun({x, Bool}, bIf(x, False, True)));
|
||||||
|
|
||||||
// forall : Pi (A : Type u), (A -> Bool) -> Bool
|
// forall : Pi (A : Type u), (A -> Bool) -> Bool
|
||||||
expr A_pred = A >> Bool;
|
expr A_pred = A >> Bool;
|
||||||
|
@ -200,21 +203,36 @@ void add_basic_theory(environment & env) {
|
||||||
env.add_axiom(subst_fn_name, Pi({{A, TypeU}, {P, A_pred}, {a, A}, {b, A}, {H1, P(a)}, {H2, Eq(a,b)}}, P(b)));
|
env.add_axiom(subst_fn_name, Pi({{A, TypeU}, {P, A_pred}, {a, A}, {b, A}, {H1, P(a)}, {H2, Eq(a,b)}}, P(b)));
|
||||||
|
|
||||||
// symm : Pi (A : Type u) (a b : A) (H : a = b), b = a :=
|
// symm : Pi (A : Type u) (a b : A) (H : a = b), b = a :=
|
||||||
// subst A (fun x : A => x = a) a b (refl A a) H
|
// Subst A (Fun x : A => x = a) a b (Refl A a) H
|
||||||
env.add_definition(symm_fn_name, Pi({{A, TypeU}, {a, A}, {b, A}, {H, Eq(a, b)}}, Eq(b, a)),
|
env.add_definition(symm_fn_name, Pi({{A, TypeU}, {a, A}, {b, A}, {H, Eq(a, b)}}, Eq(b, a)),
|
||||||
Fun({{A, TypeU}, {a, A}, {b, A}, {H, Eq(a, b)}},
|
Fun({{A, TypeU}, {a, A}, {b, A}, {H, Eq(a, b)}},
|
||||||
Subst(A, Fun({{x, A}}, Eq(x,a)), a, b, Refl(A, a), H)));
|
Subst(A, Fun({x, A}, Eq(x,a)), a, b, Refl(A, a), H)));
|
||||||
|
|
||||||
// trans: Pi (A: Type u) (a b c : A) (H1 : a = b) (H2 : b = c), a = c :=
|
// trans: Pi (A: Type u) (a b c : A) (H1 : a = b) (H2 : b = c), a = c :=
|
||||||
// subst A (fun x : A => a = x) b c H1 H2
|
// Subst A (Fun x : A => a = x) b c H1 H2
|
||||||
env.add_definition(trans_fn_name, Pi({{A, TypeU}, {a, A}, {b, A}, {c, A}, {H1, Eq(a, b)}, {H2, Eq(b, c)}}, Eq(a, c)),
|
env.add_definition(trans_fn_name, Pi({{A, TypeU}, {a, A}, {b, A}, {c, A}, {H1, Eq(a, b)}, {H2, Eq(b, c)}}, Eq(a, c)),
|
||||||
Fun({{A, TypeU}, {a, A}, {b, A}, {c, A}, {H1, Eq(a,b)}, {H2, Eq(b,c)}},
|
Fun({{A, TypeU}, {a, A}, {b, A}, {c, A}, {H1, Eq(a,b)}, {H2, Eq(b,c)}},
|
||||||
Subst(A, Fun({{x, A}}, Eq(a, x)), b, c, H1, H2)));
|
Subst(A, Fun({x, A}, Eq(a, x)), b, c, H1, H2)));
|
||||||
|
|
||||||
// congr : Pi (A : Type u) (B : A -> Type u) (f g : Pi (x : A) B x) (a b : A) (H1 : f = g) (H2 : a = b), f a = g b
|
// congr : Pi (A : Type u) (B : A -> Type u) (f g : Pi (x : A) B x) (a b : A) (H1 : f = g) (H2 : a = b), f a = g b
|
||||||
expr piABx = Pi({x, A}, B(x));
|
expr piABx = Pi({x, A}, B(x));
|
||||||
expr A_arrow_u = A >> TypeU;
|
expr A_arrow_u = A >> TypeU;
|
||||||
env.add_axiom(congr_fn_name, Pi({{A, TypeU}, {B, A_arrow_u}, {f, piABx}, {g, piABx}, {a, A}, {b, A}, {H1, Eq(f, g)}, {H2, Eq(a, b)}}, Eq(f(a), g(b))));
|
env.add_axiom(congr_fn_name, Pi({{A, TypeU}, {B, A_arrow_u}, {f, piABx}, {g, piABx}, {a, A}, {b, A}, {H1, Eq(f, g)}, {H2, Eq(a, b)}}, Eq(f(a), g(b))));
|
||||||
|
|
||||||
|
// eq_mp : Pi (a b: Bool) (H1 : a = b) (H2 : a), b :=
|
||||||
|
// Subst Bool (Fun x : Bool => x) a b H2 H1
|
||||||
|
env.add_definition(eq_mp_fn_name, Pi({{a, Bool}, {b, Bool}, {H1, Eq(a, b)}, {H2, a}}, b),
|
||||||
|
Fun({{a, Bool}, {b, Bool}, {H1, Eq(a, b)}, {H2, a}},
|
||||||
|
Subst(Bool, Fun({x, Bool}, x), a, b, H2, H1)));
|
||||||
|
|
||||||
|
// truth : True := Refl Bool True
|
||||||
|
env.add_definition(truth_name, True, Refl(Bool, True));
|
||||||
|
|
||||||
|
// eqt_elim : Pi (a : Bool) (H : a = True), a := EqMP(True, a, Symm(Bool, a, True, H), Truth)
|
||||||
|
env.add_definition(eqt_elim_fn_name, Pi({{a, Bool}, {H, Eq(a, True)}}, a),
|
||||||
|
Fun({{a, Bool}, {H, Eq(a, True)}},
|
||||||
|
EqMP(True, a, Symm(Bool, a, True, H), Truth)));
|
||||||
|
|
||||||
// ext : Pi (A : Type u) (B : A -> Type u) (f g : Pi (x : A) B x) (H : Pi x : A, (f x) = (g x)), f = g
|
// ext : Pi (A : Type u) (B : A -> Type u) (f g : Pi (x : A) B x) (H : Pi x : A, (f x) = (g x)), f = g
|
||||||
env.add_axiom(ext_fn_name, Pi({{A, TypeU}, {B, A_arrow_u}, {f, piABx}, {g, piABx}, {H, Pi({x, A}, Eq(f(x), g(x)))}}, Eq(f, g)));
|
env.add_axiom(ext_fn_name, Pi({{A, TypeU}, {B, A_arrow_u}, {f, piABx}, {g, piABx}, {H, Pi({x, A}, Eq(f(x), g(x)))}}, Eq(f, g)));
|
||||||
|
|
||||||
|
|
|
@ -111,10 +111,17 @@ bool is_subst_fn(expr const & e);
|
||||||
inline expr Subst(expr const & A, expr const & P, expr const & a, expr const & b, expr const & H1, expr const & H2) { return mk_app({mk_subst_fn(), A, P, a, b, H1, H2}); }
|
inline expr Subst(expr const & A, expr const & P, expr const & a, expr const & b, expr const & H1, expr const & H2) { return mk_app({mk_subst_fn(), A, P, a, b, H1, H2}); }
|
||||||
expr mk_symm_fn();
|
expr mk_symm_fn();
|
||||||
bool is_symm_fn(expr const & e);
|
bool is_symm_fn(expr const & e);
|
||||||
|
inline expr Symm(expr const & A, expr const & a, expr const & b, expr const & H) { return mk_app(mk_symm_fn(), A, a, b, H); }
|
||||||
expr mk_trans_fn();
|
expr mk_trans_fn();
|
||||||
bool is_trans_fn(expr const & e);
|
bool is_trans_fn(expr const & e);
|
||||||
expr mk_congr_fn();
|
expr mk_congr_fn();
|
||||||
bool is_congr_fn(expr const & e);
|
bool is_congr_fn(expr const & e);
|
||||||
|
expr mk_eq_mp_fn();
|
||||||
|
bool is_eq_mp_fn(expr const & e);
|
||||||
|
inline expr EqMP(expr const & a, expr const & b, expr const & H1, expr const & H2) { return mk_app(mk_eq_mp_fn(), a, b, H1, H2); }
|
||||||
|
expr mk_truth();
|
||||||
|
bool is_truth(expr const & e);
|
||||||
|
#define Truth mk_truth()
|
||||||
expr mk_ext_fn();
|
expr mk_ext_fn();
|
||||||
bool is_ext_fn(expr const & e);
|
bool is_ext_fn(expr const & e);
|
||||||
expr mk_foralle_fn();
|
expr mk_foralle_fn();
|
||||||
|
|
Loading…
Reference in a new issue