feat(library/standard): add 'classical' module
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
This commit is contained in:
parent
1e40525a0c
commit
9e1d425a45
3 changed files with 174 additions and 4 deletions
|
@ -11,4 +11,13 @@ notation `'1` := b1
|
||||||
|
|
||||||
theorem inhabited_bit [instance] : inhabited bit
|
theorem inhabited_bit [instance] : inhabited bit
|
||||||
:= inhabited_intro b0
|
:= inhabited_intro b0
|
||||||
|
|
||||||
|
definition cond {A : Type} (b : bit) (t e : A)
|
||||||
|
:= bit_rec e t b
|
||||||
|
|
||||||
|
theorem cond_b0 {A : Type} (t e : A) : cond b0 t e = e
|
||||||
|
:= refl (cond b0 t e)
|
||||||
|
|
||||||
|
theorem cond_b1 {A : Type} (t e : A) : cond b1 t e = t
|
||||||
|
:= refl (cond b1 t e)
|
||||||
end
|
end
|
||||||
|
|
145
library/standard/classical.lean
Normal file
145
library/standard/classical.lean
Normal file
|
@ -0,0 +1,145 @@
|
||||||
|
-- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
|
||||||
|
-- Released under Apache 2.0 license as described in the file LICENSE.
|
||||||
|
-- Author: Leonardo de Moura
|
||||||
|
import logic
|
||||||
|
|
||||||
|
axiom boolcomplete (a : Bool) : a = true ∨ a = false
|
||||||
|
|
||||||
|
theorem case (P : Bool → Bool) (H1 : P true) (H2 : P false) (a : Bool) : P a
|
||||||
|
:= or_elim (boolcomplete a)
|
||||||
|
(assume Ht : a = true, subst (symm Ht) H1)
|
||||||
|
(assume Hf : a = false, subst (symm Hf) H2)
|
||||||
|
|
||||||
|
theorem em (a : Bool) : a ∨ ¬ a
|
||||||
|
:= or_elim (boolcomplete a)
|
||||||
|
(assume Ht : a = true, or_intro_left (¬ a) (eqt_elim Ht))
|
||||||
|
(assume Hf : a = false, or_intro_right a (eqf_elim Hf))
|
||||||
|
|
||||||
|
theorem boolcomplete_swapped (a : Bool) : a = false ∨ a = true
|
||||||
|
:= case (λ x, x = false ∨ x = true)
|
||||||
|
(or_intro_right (true = false) (refl true))
|
||||||
|
(or_intro_left (false = true) (refl false))
|
||||||
|
a
|
||||||
|
|
||||||
|
theorem not_true : (¬ true) = false
|
||||||
|
:= have aux : ¬ (¬ true) = true, from
|
||||||
|
not_intro (assume H : (¬ true) = true,
|
||||||
|
absurd_not_true (subst (symm H) trivial)),
|
||||||
|
resolve_right (boolcomplete (¬ true)) aux
|
||||||
|
|
||||||
|
theorem not_false : (¬ false) = true
|
||||||
|
:= have aux : ¬ (¬ false) = false, from
|
||||||
|
not_intro (assume H : (¬ false) = false,
|
||||||
|
subst H not_false_trivial),
|
||||||
|
resolve_right (boolcomplete_swapped (¬ false)) aux
|
||||||
|
|
||||||
|
theorem not_not_eq (a : Bool) : (¬ ¬ a) = a
|
||||||
|
:= case (λ x, (¬ ¬ x) = x)
|
||||||
|
(calc (¬ ¬ true) = (¬ false) : { not_true }
|
||||||
|
... = true : not_false)
|
||||||
|
(calc (¬ ¬ false) = (¬ true) : { not_false }
|
||||||
|
... = false : not_true)
|
||||||
|
a
|
||||||
|
|
||||||
|
theorem not_not_elim {a : Bool} (H : ¬ ¬ a) : a
|
||||||
|
:= (not_not_eq a) ◂ H
|
||||||
|
|
||||||
|
theorem boolext {a b : Bool} (Hab : a → b) (Hba : b → a) : a = b
|
||||||
|
:= or_elim (boolcomplete a)
|
||||||
|
(λ Hat : a = true, or_elim (boolcomplete b)
|
||||||
|
(λ Hbt : b = true, trans Hat (symm Hbt))
|
||||||
|
(λ Hbf : b = false, false_elim (a = b) (subst Hbf (Hab (eqt_elim Hat)))))
|
||||||
|
(λ Haf : a = false, or_elim (boolcomplete b)
|
||||||
|
(λ Hbt : b = true, false_elim (a = b) (subst Haf (Hba (eqt_elim Hbt))))
|
||||||
|
(λ Hbf : b = false, trans Haf (symm Hbf)))
|
||||||
|
|
||||||
|
theorem iff_to_eq {a b : Bool} (H : a ↔ b) : a = b
|
||||||
|
:= iff_elim (assume H1 H2, boolext H1 H2) H
|
||||||
|
|
||||||
|
theorem iff_eq_eq {a b : Bool} : (a ↔ b) = (a = b)
|
||||||
|
:= boolext
|
||||||
|
(assume H, iff_to_eq H)
|
||||||
|
(assume H, eq_to_iff H)
|
||||||
|
|
||||||
|
theorem eqt_intro {a : Bool} (H : a) : a = true
|
||||||
|
:= boolext (assume H1 : a, trivial)
|
||||||
|
(assume H2 : true, H)
|
||||||
|
|
||||||
|
theorem eqf_intro {a : Bool} (H : ¬ a) : a = false
|
||||||
|
:= boolext (assume H1 : a, absurd H1 H)
|
||||||
|
(assume H2 : false, false_elim a H2)
|
||||||
|
|
||||||
|
theorem by_contradiction {a : Bool} (H : ¬ a → false) : a
|
||||||
|
:= or_elim (em a) (λ H1 : a, H1) (λ H1 : ¬ a, false_elim a (H H1))
|
||||||
|
|
||||||
|
theorem a_neq_a {A : Type} (a : A) : (a ≠ a) = false
|
||||||
|
:= boolext (assume H, a_neq_a_elim H)
|
||||||
|
(assume H, false_elim (a ≠ a) H)
|
||||||
|
|
||||||
|
theorem eq_id {A : Type} (a : A) : (a = a) = true
|
||||||
|
:= eqt_intro (refl a)
|
||||||
|
|
||||||
|
theorem heq_id {A : Type} (a : A) : (a == a) = true
|
||||||
|
:= eqt_intro (heq_refl a)
|
||||||
|
|
||||||
|
theorem not_or (a b : Bool) : (¬ (a ∨ b)) = (¬ a ∧ ¬ b)
|
||||||
|
:= boolext
|
||||||
|
(assume H, or_elim (em a)
|
||||||
|
(assume Ha, absurd_elim (¬ a ∧ ¬ b) (or_intro_left b Ha) H)
|
||||||
|
(assume Hna, or_elim (em b)
|
||||||
|
(assume Hb, absurd_elim (¬ a ∧ ¬ b) (or_intro_right a Hb) H)
|
||||||
|
(assume Hnb, and_intro Hna Hnb)))
|
||||||
|
(assume (H : ¬ a ∧ ¬ b), not_intro (assume (N : a ∨ b),
|
||||||
|
or_elim N
|
||||||
|
(assume Ha, absurd Ha (and_elim_left H))
|
||||||
|
(assume Hb, absurd Hb (and_elim_right H))))
|
||||||
|
|
||||||
|
theorem not_and (a b : Bool) : (¬ (a ∧ b)) = (¬ a ∨ ¬ b)
|
||||||
|
:= boolext
|
||||||
|
(assume H, or_elim (em a)
|
||||||
|
(assume Ha, or_elim (em b)
|
||||||
|
(assume Hb, absurd_elim (¬ a ∨ ¬ b) (and_intro Ha Hb) H)
|
||||||
|
(assume Hnb, or_intro_right (¬ a) Hnb))
|
||||||
|
(assume Hna, or_intro_left (¬ b) Hna))
|
||||||
|
(assume (H : ¬ a ∨ ¬ b), not_intro (assume (N : a ∧ b),
|
||||||
|
or_elim H
|
||||||
|
(assume Hna, absurd (and_elim_left N) Hna)
|
||||||
|
(assume Hnb, absurd (and_elim_right N) Hnb)))
|
||||||
|
|
||||||
|
theorem imp_or (a b : Bool) : (a → b) = (¬ a ∨ b)
|
||||||
|
:= boolext
|
||||||
|
(assume H : a → b,
|
||||||
|
(or_elim (em a)
|
||||||
|
(λ Ha : a, or_intro_right (¬ a) (H Ha))
|
||||||
|
(λ Hna : ¬ a, or_intro_left b Hna)))
|
||||||
|
(assume H : ¬ a ∨ b,
|
||||||
|
assume Ha : a,
|
||||||
|
resolve_right H ((symm (not_not_eq a)) ◂ Ha))
|
||||||
|
|
||||||
|
theorem not_implies (a b : Bool) : (¬ (a → b)) = (a ∧ ¬ b)
|
||||||
|
:= calc (¬ (a → b)) = (¬ (¬ a ∨ b)) : {imp_or a b}
|
||||||
|
... = (¬ ¬ a ∧ ¬ b) : not_or (¬ a) b
|
||||||
|
... = (a ∧ ¬ b) : {not_not_eq a}
|
||||||
|
|
||||||
|
theorem a_eq_not_a (a : Bool) : (a = ¬ a) = false
|
||||||
|
:= boolext
|
||||||
|
(assume H, or_elim (em a)
|
||||||
|
(assume Ha, absurd Ha (subst H Ha))
|
||||||
|
(assume Hna, absurd (subst (symm H) Hna) Hna))
|
||||||
|
(assume H, false_elim (a = ¬ a) H)
|
||||||
|
|
||||||
|
theorem true_eq_false : (true = false) = false
|
||||||
|
:= subst not_true (a_eq_not_a true)
|
||||||
|
|
||||||
|
theorem false_eq_true : (false = true) = false
|
||||||
|
:= subst not_false (a_eq_not_a false)
|
||||||
|
|
||||||
|
theorem a_eq_true (a : Bool) : (a = true) = a
|
||||||
|
:= boolext
|
||||||
|
(assume H, eqt_elim H)
|
||||||
|
(assume H, eqt_intro H)
|
||||||
|
|
||||||
|
theorem a_eq_false (a : Bool) : (a = false) = (¬ a)
|
||||||
|
:= boolext
|
||||||
|
(assume H, eqf_elim H)
|
||||||
|
(assume H, eqf_intro H)
|
|
@ -36,6 +36,12 @@ theorem contrapos {a b : Bool} (H : a → b) : ¬ b → ¬ a
|
||||||
theorem absurd_elim {a : Bool} (b : Bool) (H1 : a) (H2 : ¬ a) : b
|
theorem absurd_elim {a : Bool} (b : Bool) (H1 : a) (H2 : ¬ a) : b
|
||||||
:= false_elim b (absurd H1 H2)
|
:= false_elim b (absurd H1 H2)
|
||||||
|
|
||||||
|
theorem absurd_not_true (H : ¬ true) : false
|
||||||
|
:= absurd trivial H
|
||||||
|
|
||||||
|
theorem not_false_trivial : ¬ false
|
||||||
|
:= assume H : false, H
|
||||||
|
|
||||||
inductive and (a b : Bool) : Bool :=
|
inductive and (a b : Bool) : Bool :=
|
||||||
| and_intro : a → b → and a b
|
| and_intro : a → b → and a b
|
||||||
|
|
||||||
|
@ -85,6 +91,10 @@ calc_subst subst
|
||||||
calc_refl refl
|
calc_refl refl
|
||||||
calc_trans trans
|
calc_trans trans
|
||||||
|
|
||||||
|
theorem true_ne_false : ¬ true = false
|
||||||
|
:= assume H : true = false,
|
||||||
|
subst H trivial
|
||||||
|
|
||||||
theorem symm {A : Type} {a b : A} (H : a = b) : b = a
|
theorem symm {A : Type} {a b : A} (H : a = b) : b = a
|
||||||
:= subst H (refl a)
|
:= subst H (refl a)
|
||||||
|
|
||||||
|
@ -136,6 +146,9 @@ theorem ne_intro {A : Type} {a b : A} (H : a = b → false) : a ≠ b
|
||||||
theorem ne_elim {A : Type} {a b : A} (H1 : a ≠ b) (H2 : a = b) : false
|
theorem ne_elim {A : Type} {a b : A} (H1 : a ≠ b) (H2 : a = b) : false
|
||||||
:= H1 H2
|
:= H1 H2
|
||||||
|
|
||||||
|
theorem a_neq_a_elim {A : Type} {a : A} (H : a ≠ a) : false
|
||||||
|
:= H (refl a)
|
||||||
|
|
||||||
theorem ne_irrefl {A : Type} {a : A} (H : a ≠ a) : false
|
theorem ne_irrefl {A : Type} {a : A} (H : a ≠ a) : false
|
||||||
:= H (refl a)
|
:= H (refl a)
|
||||||
|
|
||||||
|
@ -172,6 +185,9 @@ theorem iff_mp_left {a b : Bool} (H1 : a ↔ b) (H2 : a) : b
|
||||||
theorem iff_mp_right {a b : Bool} (H1 : a ↔ b) (H2 : b) : a
|
theorem iff_mp_right {a b : Bool} (H1 : a ↔ b) (H2 : b) : a
|
||||||
:= (iff_elim_right H1) H2
|
:= (iff_elim_right H1) H2
|
||||||
|
|
||||||
|
theorem eq_to_iff {a b : Bool} (H : a = b) : a ↔ b
|
||||||
|
:= iff_intro (λ Ha, subst H Ha) (λ Hb, subst (symm H) Hb)
|
||||||
|
|
||||||
inductive Exists {A : Type} (P : A → Bool) : Bool :=
|
inductive Exists {A : Type} (P : A → Bool) : Bool :=
|
||||||
| exists_intro : ∀ (a : A), P a → Exists P
|
| exists_intro : ∀ (a : A), P a → Exists P
|
||||||
|
|
||||||
|
@ -221,16 +237,16 @@ infixl `==`:50 := heq
|
||||||
theorem heq_type_eq {A B : Type} {a : A} {b : B} (H : a == b) : A = B
|
theorem heq_type_eq {A B : Type} {a : A} {b : B} (H : a == b) : A = B
|
||||||
:= exists_elim H (λ H Hw, H)
|
:= exists_elim H (λ H Hw, H)
|
||||||
|
|
||||||
theorem to_heq {A : Type} {a b : A} (H : a = b) : a == b
|
theorem eq_to_heq {A : Type} {a b : A} (H : a = b) : a == b
|
||||||
:= exists_intro (refl A) (trans (cast_refl a) H)
|
:= exists_intro (refl A) (trans (cast_refl a) H)
|
||||||
|
|
||||||
theorem to_eq {A : Type} {a b : A} (H : a == b) : a = b
|
theorem heq_to_eq {A : Type} {a b : A} (H : a == b) : a = b
|
||||||
:= exists_elim H (λ (H : A = A) (Hw : cast H a = b),
|
:= exists_elim H (λ (H : A = A) (Hw : cast H a = b),
|
||||||
calc a = cast H a : symm (cast_eq H a)
|
calc a = cast H a : symm (cast_eq H a)
|
||||||
... = b : Hw)
|
... = b : Hw)
|
||||||
|
|
||||||
theorem heq_refl {A : Type} (a : A) : a == a
|
theorem heq_refl {A : Type} (a : A) : a == a
|
||||||
:= to_heq (refl a)
|
:= eq_to_heq (refl a)
|
||||||
|
|
||||||
theorem heqt_elim {a : Bool} (H : a == true) : a
|
theorem heqt_elim {a : Bool} (H : a == true) : a
|
||||||
:= eqt_elim (to_eq H)
|
:= eqt_elim (heq_to_eq H)
|
||||||
|
|
Loading…
Reference in a new issue