refactor(library/unifier): combine active and delayed constraint sets

Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
This commit is contained in:
Leonardo de Moura 2014-06-22 21:10:59 -07:00
parent 4da9c2a2cb
commit 9f7b92a410

View file

@ -148,6 +148,8 @@ std::pair<unify_status, substitution> unify_simple(substitution const & s, const
} }
static constraint g_dont_care_cnstr = mk_eq_cnstr(expr(), expr(), justification()); static constraint g_dont_care_cnstr = mk_eq_cnstr(expr(), expr(), justification());
static unsigned g_first_delayed = 1u << 28;
static unsigned g_first_very_delayed = 1u << 30;
struct unifier_fn { struct unifier_fn {
typedef std::pair<constraint, unsigned> cnstr; // constraint + idx typedef std::pair<constraint, unsigned> cnstr; // constraint + idx
@ -170,8 +172,7 @@ struct unifier_fn {
bool m_first; bool m_first;
unsigned m_next_assumption_idx; unsigned m_next_assumption_idx;
unsigned m_next_cidx; unsigned m_next_cidx;
cnstr_set m_active; cnstr_set m_cnstrs;
cnstr_set m_delayed;
name_to_cnstrs m_mvar_occs; name_to_cnstrs m_mvar_occs;
name_to_cnstrs m_mlvl_occs; name_to_cnstrs m_mlvl_occs;
@ -180,14 +181,13 @@ struct unifier_fn {
justification m_failed_justifications; // justifications for failed branches justification m_failed_justifications; // justifications for failed branches
// snapshot of unifier's state // snapshot of unifier's state
substitution m_subst; substitution m_subst;
cnstr_set m_active; cnstr_set m_cnstrs;
cnstr_set m_delayed;
name_to_cnstrs m_mvar_occs; name_to_cnstrs m_mvar_occs;
name_to_cnstrs m_mlvl_occs; name_to_cnstrs m_mlvl_occs;
// Save unifier's state // Save unifier's state
case_split(unifier_fn & u): case_split(unifier_fn & u):
m_assumption_idx(u.m_next_assumption_idx), m_subst(u.m_subst), m_active(u.m_active), m_delayed(u.m_delayed), m_assumption_idx(u.m_next_assumption_idx), m_subst(u.m_subst), m_cnstrs(u.m_cnstrs),
m_mvar_occs(u.m_mvar_occs), m_mlvl_occs(u.m_mlvl_occs) { m_mvar_occs(u.m_mvar_occs), m_mlvl_occs(u.m_mlvl_occs) {
u.m_next_assumption_idx++; u.m_next_assumption_idx++;
u.m_tc.push(); u.m_tc.push();
@ -199,8 +199,7 @@ struct unifier_fn {
u.m_tc.pop(); // restore type checker state u.m_tc.pop(); // restore type checker state
u.m_tc.push(); u.m_tc.push();
u.m_subst = m_subst; u.m_subst = m_subst;
u.m_active = m_active; u.m_cnstrs = m_cnstrs;
u.m_delayed = m_delayed;
u.m_mvar_occs = m_mvar_occs; u.m_mvar_occs = m_mvar_occs;
u.m_mlvl_occs = m_mlvl_occs; u.m_mlvl_occs = m_mlvl_occs;
m_assumption_idx = u.m_next_assumption_idx; m_assumption_idx = u.m_next_assumption_idx;
@ -285,16 +284,19 @@ struct unifier_fn {
} }
} }
void add_active(constraint const & c, name_set const * mlvl_occs, name_set const * mvar_occs) { void add_cnstr(constraint const & c, name_set const * mlvl_occs, name_set const * mvar_occs, unsigned start_cidx = 0) {
m_active.insert(cnstr(c, m_next_cidx)); unsigned cidx = m_next_cidx + start_cidx;
add_occs(m_next_cidx, mlvl_occs, mvar_occs); m_cnstrs.insert(cnstr(c, cidx));
add_occs(cidx, mlvl_occs, mvar_occs);
m_next_cidx++; m_next_cidx++;
} }
void add_delayed(constraint const & c, name_set const * mlvl_occs, name_set const * mvar_occs) { void add_delayed_cnstr(constraint const & c, name_set const * mlvl_occs, name_set const * mvar_occs) {
m_delayed.insert(cnstr(c, m_next_cidx)); add_cnstr(c, mlvl_occs, mvar_occs, g_first_delayed);
add_occs(m_next_cidx, mlvl_occs, mvar_occs); }
m_next_cidx++;
void add_very_delayed_cnstr(constraint const & c, name_set const * mlvl_occs, name_set const * mvar_occs) {
add_cnstr(c, mlvl_occs, mvar_occs, g_first_very_delayed);
} }
bool assign(expr const & m, expr const & v, justification const & j) { bool assign(expr const & m, expr const & v, justification const & j) {
@ -386,10 +388,12 @@ struct unifier_fn {
} }
} }
if (is_meta(lhs) || is_meta(rhs)) { if (is_meta(lhs) && is_meta(rhs)) {
add_delayed(c, &unassigned_lvls, &unassigned_exprs); add_very_delayed_cnstr(c, &unassigned_lvls, &unassigned_exprs);
} else if (is_meta(lhs) || is_meta(rhs)) {
add_delayed_cnstr(c, &unassigned_lvls, &unassigned_exprs);
} else { } else {
add_active(c, &unassigned_lvls, &unassigned_exprs); add_cnstr(c, &unassigned_lvls, &unassigned_exprs);
} }
return true; return true;
} }
@ -443,9 +447,9 @@ struct unifier_fn {
if (lhs != cnstr_lhs_level(c) || rhs != cnstr_rhs_level(c)) { if (lhs != cnstr_lhs_level(c) || rhs != cnstr_rhs_level(c)) {
constraint new_c = mk_level_eq_cnstr(lhs, rhs, new_jst); constraint new_c = mk_level_eq_cnstr(lhs, rhs, new_jst);
add_delayed(new_c, &unassigned_lvls, nullptr); add_delayed_cnstr(new_c, &unassigned_lvls, nullptr);
} else { } else {
add_delayed(c, &unassigned_lvls, nullptr); add_delayed_cnstr(c, &unassigned_lvls, nullptr);
} }
return true; return true;
@ -457,7 +461,7 @@ struct unifier_fn {
check_system(); check_system();
switch (c.kind()) { switch (c.kind()) {
case constraint_kind::Choice: case constraint_kind::Choice:
add_active(c, nullptr, nullptr); add_cnstr(c, nullptr, nullptr);
return true; return true;
case constraint_kind::Eq: case constraint_kind::Eq:
return process_eq_constraint(c); return process_eq_constraint(c);
@ -471,15 +475,9 @@ struct unifier_fn {
if (in_conflict()) if (in_conflict())
return false; return false;
cnstr c(g_dont_care_cnstr, cidx); cnstr c(g_dont_care_cnstr, cidx);
if (auto it = m_active.find(c)) { if (auto it = m_cnstrs.find(c)) {
lean_assert(!m_delayed.contains(c));
constraint c2 = it->first; constraint c2 = it->first;
m_active.erase(c); m_cnstrs.erase(c);
return process_constraint(c2);
}
if (auto it = m_delayed.find(c)) {
constraint c2 = it->first;
m_delayed.erase(c);
return process_constraint(c2); return process_constraint(c2);
} }
return true; return true;
@ -588,21 +586,42 @@ struct unifier_fn {
} }
} }
bool process_next_active() { bool process_flex_rigid(constraint const &) {
lean_assert(!m_active.empty()); // TODO(Leo):
constraint c = m_active.min()->first; return true;
m_active.erase_min();
if (is_choice_cnstr(c))
return process_choice_constraint(c);
else
return process_plugin_constraint(c);
} }
bool process_next_delayed() { bool process_flex_flex(constraint const &) {
// TODO(Leo) // TODO(Leo):
return true; return true;
} }
static bool is_flex_rigid(constraint const & c) {
if (!is_eq_cnstr(c))
return false;
bool is_lhs_meta = is_meta(cnstr_lhs_expr(c));
bool is_rhs_meta = is_meta(cnstr_rhs_expr(c));
return is_lhs_meta != is_rhs_meta;
}
static bool is_flex_flex(constraint const & c) {
return is_eq_cnstr(c) && is_meta(cnstr_lhs_expr(c)) && is_meta(cnstr_rhs_expr(c));
}
bool process_next() {
lean_assert(!m_cnstrs.empty());
constraint c = m_cnstrs.min()->first;
m_cnstrs.erase_min();
if (is_choice_cnstr(c))
return process_choice_constraint(c);
else if (is_flex_rigid(c))
return process_flex_rigid(c);
else if (is_flex_flex(c))
return process_flex_flex(c);
else
return process_plugin_constraint(c);
}
optional<substitution> next() { optional<substitution> next() {
if (in_conflict()) if (in_conflict())
return failure(); return failure();
@ -620,19 +639,15 @@ struct unifier_fn {
// We don't throw an exception since there are no more solutions. // We don't throw an exception since there are no more solutions.
return optional<substitution>(); return optional<substitution>();
} }
while (!m_active.empty() || !m_delayed.empty()) { while (!m_cnstrs.empty()) {
check_system(); check_system();
lean_assert(!in_conflict()); lean_assert(!in_conflict());
bool ok = true; bool ok = process_next();
if (!m_active.empty())
ok = process_next_active();
else
ok = process_next_delayed();
if (!ok && !resolve_conflict()) if (!ok && !resolve_conflict())
return failure(); return failure();
} }
lean_assert(!in_conflict()) lean_assert(!in_conflict());
lean_assert(m_active.empty() && m_delayed.empty()); lean_assert(m_cnstrs.empty());
return optional<substitution>(m_subst); return optional<substitution>(m_subst);
} }
}; };