chore(tests): remove most occurrences of 'context' command from the test suite
This commit is contained in:
parent
76bf8de91a
commit
9fb7aa9f1c
46 changed files with 90 additions and 87 deletions
|
@ -6,7 +6,7 @@ mk : A → H A
|
|||
definition foo {A : Type} [h : H A] : A :=
|
||||
H.rec (λa, a) h
|
||||
|
||||
context
|
||||
section
|
||||
variable A : Type
|
||||
variable h : H A
|
||||
definition tst : A :=
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
import logic
|
||||
|
||||
context
|
||||
section
|
||||
hypothesis P : Prop.
|
||||
|
||||
definition crash
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
import logic
|
||||
definition id {A : Type} (a : A) := a
|
||||
|
||||
context
|
||||
section
|
||||
set_option pp.implicit true
|
||||
check id true
|
||||
end
|
||||
|
|
|
@ -1,2 +1,2 @@
|
|||
@id Prop true : Prop
|
||||
id true : Prop
|
||||
@id Prop true : Prop
|
||||
|
|
|
@ -3,29 +3,32 @@ definition Prop := Type.{0} inductive true : Prop := intro : true inductive fals
|
|||
inductive prod (A B : Type) := mk : A → B → prod A B infixl `×`:30 := prod
|
||||
variables a b c : num
|
||||
|
||||
context
|
||||
notation `(` t:(foldr `,` (e r, prod.mk e r)) `)` := t
|
||||
section
|
||||
local notation `(` t:(foldr `,` (e r, prod.mk e r)) `)` := t
|
||||
check (a, false, b, true, c)
|
||||
set_option pp.notation false
|
||||
check (a, false, b, true, c)
|
||||
end
|
||||
|
||||
context
|
||||
notation `(` t:(foldr `,` (e r, prod.mk r e)) `)` := t
|
||||
section
|
||||
local notation `(` t:(foldr `,` (e r, prod.mk r e)) `)` := t
|
||||
set_option pp.notation true
|
||||
check (a, false, b, true, c)
|
||||
set_option pp.notation false
|
||||
check (a, false, b, true, c)
|
||||
end
|
||||
|
||||
context
|
||||
notation `(` t:(foldl `,` (e r, prod.mk r e)) `)` := t
|
||||
section
|
||||
local notation `(` t:(foldl `,` (e r, prod.mk r e)) `)` := t
|
||||
set_option pp.notation true
|
||||
check (a, false, b, true, c)
|
||||
set_option pp.notation false
|
||||
check (a, false, b, true, c)
|
||||
end
|
||||
|
||||
context
|
||||
notation `(` t:(foldl `,` (e r, prod.mk e r)) `)` := t
|
||||
section
|
||||
local notation `(` t:(foldl `,` (e r, prod.mk e r)) `)` := t
|
||||
set_option pp.notation true
|
||||
check (a, false, b, true, c)
|
||||
set_option pp.notation false
|
||||
check (a, false, b, true, c)
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
open is_trunc
|
||||
--structure is_contr [class] (A : Type) : Type
|
||||
|
||||
context
|
||||
section
|
||||
parameters {P : Π(A : Type), A → Type}
|
||||
|
||||
definition my_contr {A : Type} [H : is_contr A] (a : A) : P A a := sorry
|
||||
|
|
|
@ -2,7 +2,7 @@ import algebra.group algebra.precategory.basic
|
|||
|
||||
open eq sigma unit category path_algebra
|
||||
|
||||
context
|
||||
section
|
||||
parameters {P₀ : Type} [P : precategory P₀]
|
||||
|
||||
structure my_structure := (a : P₀) (b : P₀) (f : @hom P₀ P a b)
|
||||
|
|
|
@ -5,7 +5,7 @@ open eq sigma unit category path_algebra equiv
|
|||
set_option pp.implicit true
|
||||
set_option pp.universes true
|
||||
set_option pp.notation false
|
||||
context
|
||||
section
|
||||
parameters {D₀ : Type} [C : precategory D₀]
|
||||
{D₂ : Π ⦃a b c d : D₀⦄ (f : hom a b) (g : hom c d)
|
||||
(h : hom a c) (i : hom b d), Type}
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
open is_trunc
|
||||
|
||||
context
|
||||
section
|
||||
parameters {P : Π(A : Type), A → Type}
|
||||
|
||||
definition my_contr {A : Type} [H : is_contr A] (a : A) : P A a := sorry
|
||||
|
|
|
@ -2,7 +2,7 @@ import algebra.precategory.basic
|
|||
|
||||
open category
|
||||
|
||||
context
|
||||
section
|
||||
parameter {D₀ : Type}
|
||||
parameter (C : precategory D₀)
|
||||
parameter (D₂ : Π ⦃a b c d : D₀⦄ (f : hom a b) (g : hom c d) (h : hom a c) (i : hom b d), Type)
|
||||
|
@ -22,7 +22,7 @@ context
|
|||
(ID₁ : ID₁_type)
|
||||
end
|
||||
|
||||
context
|
||||
section
|
||||
parameter {D₀ : Type}
|
||||
parameter [C : precategory D₀]
|
||||
parameter {D₂ : Π ⦃a b c d : D₀⦄ (f : hom a b) (g : hom c d) (h : hom a c) (i : hom b d), Type}
|
||||
|
|
|
@ -1,10 +1,10 @@
|
|||
context
|
||||
section
|
||||
open [notations] [coercions] nat
|
||||
check 1 + 2
|
||||
check add -- Error aliases were not created
|
||||
end
|
||||
|
||||
context
|
||||
section
|
||||
open [declarations] [notations] nat
|
||||
variable a : nat
|
||||
check a + a
|
||||
|
@ -12,7 +12,7 @@ context
|
|||
check a + 1 -- Error coercion from num to nat was not loaded
|
||||
end
|
||||
|
||||
context
|
||||
section
|
||||
open - [classes] nat
|
||||
variable a : nat
|
||||
check a + a
|
||||
|
@ -22,7 +22,7 @@ context
|
|||
_ -- Error inhabited instances was not loaded
|
||||
end
|
||||
|
||||
context
|
||||
section
|
||||
open - [classes] [decls] nat
|
||||
variable a : nat
|
||||
check a + a
|
||||
|
@ -32,7 +32,7 @@ context
|
|||
_ -- Error inhabited instances was not loaded
|
||||
end
|
||||
|
||||
context
|
||||
section
|
||||
open [classes] nat
|
||||
definition foo3 : inhabited nat :=
|
||||
_
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
open eq
|
||||
|
||||
context
|
||||
section
|
||||
parameter (A : Type)
|
||||
|
||||
definition foo (a : A) : a = a := refl a
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
import algebra.group
|
||||
open algebra
|
||||
|
||||
context
|
||||
section
|
||||
variable {A : Type}
|
||||
variable [s : comm_monoid A]
|
||||
include s
|
||||
|
@ -13,7 +13,7 @@ end
|
|||
definition one [reducible] (A : Type) [s : has_one A] : A :=
|
||||
!has_one.one
|
||||
|
||||
context
|
||||
section
|
||||
variable {A : Type}
|
||||
variable [s : comm_group A]
|
||||
include s
|
||||
|
|
|
@ -3,13 +3,13 @@ import logic
|
|||
namespace experiment
|
||||
definition Type1 := Type.{1}
|
||||
|
||||
context
|
||||
section
|
||||
variable {A : Type}
|
||||
variable f : A → A → A
|
||||
variable one : A
|
||||
variable inv : A → A
|
||||
infixl `*` := f
|
||||
postfix `^-1`:100 := inv
|
||||
local infixl `*` := f
|
||||
local postfix `^-1`:100 := inv
|
||||
definition is_assoc := ∀ a b c, (a*b)*c = a*b*c
|
||||
definition is_id := ∀ a, a*one = a
|
||||
definition is_inv := ∀ a, a*a^-1 = one
|
||||
|
|
|
@ -1,8 +1,8 @@
|
|||
import logic
|
||||
|
||||
namespace N1
|
||||
context
|
||||
context
|
||||
section
|
||||
section
|
||||
parameter A : Type
|
||||
definition foo (a : A) : Prop := true
|
||||
check foo
|
||||
|
@ -14,7 +14,7 @@ end N1
|
|||
check N1.foo
|
||||
|
||||
namespace N2
|
||||
context
|
||||
section
|
||||
parameter A : Type
|
||||
inductive list : Type :=
|
||||
| nil {} : list
|
||||
|
|
|
@ -37,9 +37,9 @@ infix `=`:50 := eq
|
|||
|
||||
check eq.{1}
|
||||
|
||||
context
|
||||
universe l
|
||||
universe u
|
||||
section
|
||||
universe variable l
|
||||
universe variable u
|
||||
variable {T1 : Type.{l}}
|
||||
variable {T2 : Type.{l}}
|
||||
variable {T3 : Type.{u}}
|
||||
|
|
|
@ -2,7 +2,7 @@ import logic
|
|||
|
||||
definition subsets (P : Type) := P → Prop.
|
||||
|
||||
context
|
||||
section
|
||||
|
||||
hypothesis A : Type.
|
||||
|
||||
|
@ -14,7 +14,7 @@ hypothesis retract {P : subsets A} {a : A} : r (i P) a = P a.
|
|||
|
||||
definition delta (a:A) : Prop := ¬ (r a a).
|
||||
|
||||
notation `δ` := delta.
|
||||
local notation `δ` := delta.
|
||||
|
||||
-- Crashes unifier!
|
||||
theorem false_aux : ¬ (δ (i delta))
|
||||
|
|
|
@ -2,7 +2,7 @@ import logic
|
|||
open eq
|
||||
definition subsets (P : Type) := P → Prop.
|
||||
|
||||
context
|
||||
section
|
||||
|
||||
hypothesis A : Type.
|
||||
|
||||
|
@ -14,7 +14,7 @@ hypothesis retract {P : subsets A} {a : A} : r (i P) a = P a.
|
|||
|
||||
definition delta (a:A) : Prop := ¬ (r a a).
|
||||
|
||||
notation `δ` := delta.
|
||||
local notation `δ` := delta.
|
||||
|
||||
theorem delta_aux : ¬ (δ (i delta))
|
||||
:= assume H : δ (i delta),
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
context
|
||||
section
|
||||
open tactic
|
||||
definition cases_refl (e : expr) : tactic :=
|
||||
cases e expr_list.nil; apply rfl
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
import data.list
|
||||
open nat list
|
||||
|
||||
context
|
||||
section
|
||||
parameter {A : Type}
|
||||
parameter (p : A → Prop)
|
||||
parameter [H : decidable_pred p]
|
||||
|
|
|
@ -1,12 +1,12 @@
|
|||
import logic
|
||||
|
||||
context
|
||||
section
|
||||
variable {A : Type}
|
||||
variable f : A → A → A
|
||||
variable one : A
|
||||
variable inv : A → A
|
||||
infixl `*` := f
|
||||
postfix `^-1`:100 := inv
|
||||
local infixl `*` := f
|
||||
local postfix `^-1`:100 := inv
|
||||
definition is_assoc := ∀ a b c, (a*b)*c = a*b*c
|
||||
definition is_id := ∀ a, a*one = a
|
||||
definition is_inv := ∀ a, a*a^-1 = one
|
||||
|
|
|
@ -1,12 +1,12 @@
|
|||
import logic
|
||||
|
||||
context
|
||||
section
|
||||
variable {A : Type}
|
||||
variable f : A → A → A
|
||||
variable one : A
|
||||
variable inv : A → A
|
||||
infixl `*` := f
|
||||
postfix `^-1`:100 := inv
|
||||
local infixl `*` := f
|
||||
local postfix `^-1`:100 := inv
|
||||
definition is_assoc := ∀ a b c, (a*b)*c = a*b*c
|
||||
definition is_id := ∀ a, a*one = a
|
||||
definition is_inv := ∀ a, a*a^-1 = one
|
||||
|
|
|
@ -43,7 +43,7 @@ section
|
|||
variables {A : Type} [s : semigroup A]
|
||||
variables a b c : A
|
||||
definition mul := semigroup.rec (λmul assoc, mul) s a b
|
||||
context
|
||||
section
|
||||
infixl `*` := mul
|
||||
definition assoc : (a * b) * c = a * (b * c) :=
|
||||
semigroup.rec (λmul assoc, assoc) s a b c
|
||||
|
@ -111,7 +111,7 @@ namespace monoid
|
|||
variables {A : Type} [s : monoid A]
|
||||
variables a b c : A
|
||||
include s
|
||||
context
|
||||
section
|
||||
definition mul := monoid.rec (λmul one assoc right_id left_id, mul) s a b
|
||||
definition one := monoid.rec (λmul one assoc right_id left_id, one) s
|
||||
infixl `*` := mul
|
||||
|
|
|
@ -3,7 +3,7 @@ structure is_equiv [class] {A B : Type} (f : A → B) :=
|
|||
|
||||
check @is_equiv.inv
|
||||
namespace is_equiv
|
||||
context
|
||||
section
|
||||
parameters A B : Type
|
||||
parameter f : A → B
|
||||
parameter c : is_equiv f
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
set_option pp.implicit true
|
||||
set_option pp.universes true
|
||||
context
|
||||
section
|
||||
parameter {A : Type}
|
||||
definition foo : A → A → Type := (λ x y, Type)
|
||||
inductive bar {a b : A} (f : foo a b) :=
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
open nat
|
||||
|
||||
context
|
||||
section
|
||||
inductive NatA :=
|
||||
| a : NatA
|
||||
| s : NatA → NatA
|
||||
|
|
|
@ -21,7 +21,7 @@ protected theorem dec_eq : ∀ x y : nat, decidable (x = y)
|
|||
| inr H := inr (λ h : succ x = succ y, nat.no_confusion h (λ heq : x = y, absurd heq H))
|
||||
end
|
||||
|
||||
context
|
||||
section
|
||||
open list
|
||||
parameter {A : Type}
|
||||
parameter (p : A → Prop)
|
||||
|
|
|
@ -1,16 +1,16 @@
|
|||
prelude
|
||||
definition Prop : Type.{1} := Type.{0}
|
||||
context
|
||||
section
|
||||
variable N : Type.{1}
|
||||
variables a b c : N
|
||||
variable and : Prop → Prop → Prop
|
||||
infixr `∧`:35 := and
|
||||
local infixr `∧`:35 := and
|
||||
variable le : N → N → Prop
|
||||
variable lt : N → N → Prop
|
||||
precedence `≤`:50
|
||||
precedence `<`:50
|
||||
infixl ≤ := le
|
||||
infixl < := lt
|
||||
local infixl ≤ := le
|
||||
local infixl < := lt
|
||||
check a ≤ b
|
||||
definition T : Prop := a ≤ b
|
||||
check T
|
||||
|
|
|
@ -10,7 +10,7 @@ unit : one2
|
|||
|
||||
check one2
|
||||
|
||||
context foo
|
||||
section foo
|
||||
universe l2
|
||||
parameter A : Type.{l2}
|
||||
|
||||
|
|
|
@ -2,10 +2,10 @@ import logic data.unit
|
|||
|
||||
set_option pp.universes true
|
||||
|
||||
context
|
||||
section
|
||||
parameter (A : Type)
|
||||
|
||||
context
|
||||
section
|
||||
parameter (B : Type)
|
||||
|
||||
structure point :=
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
import logic
|
||||
|
||||
context
|
||||
section
|
||||
parameter A : Type
|
||||
definition foo : ∀ ⦃ a b : A ⦄, a = b → a = b :=
|
||||
take a b H, H
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
context
|
||||
section
|
||||
parameter (A : Type)
|
||||
definition foo := A
|
||||
theorem bar {X : Type} {A : X} : foo :=
|
||||
|
|
|
@ -3,13 +3,13 @@ import logic
|
|||
set_option pp.universes true
|
||||
set_option pp.implicit true
|
||||
|
||||
context
|
||||
section
|
||||
universe k
|
||||
parameter A : Type
|
||||
|
||||
context
|
||||
universe l
|
||||
universe u
|
||||
universe variable l
|
||||
universe variable u
|
||||
parameter B : Type
|
||||
definition foo (a : A) (b : B) := b
|
||||
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
prelude
|
||||
definition Prop : Type.{1} := Type.{0}
|
||||
context
|
||||
section
|
||||
parameter A : Type
|
||||
|
||||
definition eq (a b : A) : Prop
|
||||
|
|
|
@ -3,7 +3,7 @@ variable (A : Type)
|
|||
structure foo (a : A) :=
|
||||
(eqpr : a = a)
|
||||
|
||||
context
|
||||
section
|
||||
parameter (B : Type)
|
||||
|
||||
structure foo2 (b : B) :=
|
||||
|
|
|
@ -27,7 +27,7 @@ section
|
|||
check point3d_color.to_point
|
||||
end
|
||||
|
||||
context
|
||||
section
|
||||
universe l
|
||||
parameters A : Type.{l}
|
||||
parameters B : Type.{l}
|
||||
|
|
|
@ -2,7 +2,7 @@ constant A : Type.{1}
|
|||
constants a b c : A
|
||||
constant f : A → A → A
|
||||
check f a b
|
||||
context
|
||||
section
|
||||
parameters A B : Type
|
||||
parameters {C D : Type}
|
||||
parameters [e d : A]
|
||||
|
|
|
@ -19,7 +19,7 @@ end S2
|
|||
|
||||
|
||||
namespace S3
|
||||
context
|
||||
section
|
||||
hypothesis I : Type
|
||||
definition F (X : Type) : Type := (X → Prop) → Prop
|
||||
hypothesis unfold : I → F I
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
import algebra.category.basic
|
||||
|
||||
set_option pp.universes true
|
||||
context
|
||||
section
|
||||
universes l₁ l₂ l₃ l₄
|
||||
parameter C : Category.{l₁ l₂}
|
||||
parameter f : Category.{l₁ l₂} → Category.{l₃ l₄}
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
context
|
||||
section
|
||||
parameter A : Type
|
||||
definition tst (a : A) := a
|
||||
set_option pp.universes true
|
||||
|
|
|
@ -5,25 +5,25 @@ prelude namespace foo
|
|||
constant c : A
|
||||
end foo
|
||||
|
||||
context
|
||||
section
|
||||
open foo (renaming a->b x->y) (hiding c)
|
||||
check b
|
||||
check y
|
||||
check c -- Error
|
||||
end
|
||||
|
||||
context
|
||||
section
|
||||
open foo (a x)
|
||||
check a
|
||||
check x
|
||||
check c -- Error
|
||||
end
|
||||
|
||||
context
|
||||
section
|
||||
open foo (a x) (hiding c) -- Error
|
||||
end
|
||||
|
||||
context
|
||||
section
|
||||
open foo
|
||||
check a
|
||||
check c
|
||||
|
@ -35,18 +35,18 @@ namespace foo
|
|||
infix `*`:75 := f
|
||||
end foo
|
||||
|
||||
context
|
||||
section
|
||||
open foo
|
||||
check a * c
|
||||
end
|
||||
|
||||
context
|
||||
section
|
||||
open [notations] foo -- use only the notation
|
||||
check foo.a * foo.c
|
||||
check a * c -- Error
|
||||
end
|
||||
|
||||
context
|
||||
section
|
||||
open [decls] foo -- use only the declarations
|
||||
check f a c
|
||||
check a*c -- Error
|
||||
|
|
|
@ -7,13 +7,13 @@ namespace tst
|
|||
end tst
|
||||
print raw Type.{tst.v}
|
||||
print raw Type.{v} -- Error: alias 'v' is not available anymore
|
||||
context
|
||||
universe z -- Remark: this is a local universe
|
||||
section
|
||||
universe variable z -- Remark: this is a local universe
|
||||
print raw Type.{z}
|
||||
end
|
||||
print raw Type.{z} -- Error: local universe 'z' is gone
|
||||
context
|
||||
namespace foo -- Error: we cannot create a namespace inside a context
|
||||
section
|
||||
namespace foo -- Error: we cannot create a namespace inside a section
|
||||
end
|
||||
namespace tst
|
||||
print raw Type.{v} -- Remark: alias 'v' is available again
|
||||
|
|
|
@ -13,7 +13,7 @@ constant f (a b : N) : N
|
|||
constant len.{l} (A : Type.{l}) (n : N) (v : vec.{l} A n) : N
|
||||
check f
|
||||
check len.{1}
|
||||
context
|
||||
section
|
||||
parameter A : Type
|
||||
parameter B : Prop
|
||||
hypothesis H : B
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
prelude definition Prop : Type.{1} := Type.{0}
|
||||
constant and : Prop → Prop → Prop
|
||||
context
|
||||
section
|
||||
parameter {A : Type} -- Mark A as implicit parameter
|
||||
parameter R : A → A → Prop
|
||||
parameter B : Type
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
import logic
|
||||
|
||||
|
||||
context
|
||||
section
|
||||
variable A : Type
|
||||
parameter a : A
|
||||
end
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
import logic
|
||||
|
||||
|
||||
context
|
||||
section
|
||||
universe l
|
||||
variable A : Type.{l}
|
||||
variable a : A
|
||||
|
|
Loading…
Reference in a new issue