test(simplifier9.lean): fix order of congr rules
This commit is contained in:
parent
b9a516783c
commit
a02459fe5e
2 changed files with 5 additions and 3 deletions
|
@ -1,8 +1,8 @@
|
||||||
-- Rewriting with (tmp)-local hypotheses
|
-- Rewriting with (tmp)-local hypotheses
|
||||||
import logic.quantifiers
|
import logic.quantifiers
|
||||||
|
|
||||||
attribute congr_forall [congr]
|
|
||||||
attribute congr_imp [congr]
|
attribute congr_imp [congr]
|
||||||
|
attribute congr_forall [congr]
|
||||||
|
|
||||||
universe l
|
universe l
|
||||||
constants (T : Type.{l}) (P Q : T → Prop)
|
constants (T : Type.{l}) (P Q : T → Prop)
|
||||||
|
@ -22,7 +22,8 @@ constants (x y : T)
|
||||||
|
|
||||||
#simplify iff env 0 ∀ (p : Prop) (H : ∀ x, P x ↔ Q x), p ∨ P x
|
#simplify iff env 0 ∀ (p : Prop) (H : ∀ x, P x ↔ Q x), p ∨ P x
|
||||||
#simplify iff env 0 (∀ (x : T), P x ↔ Q x) → P x
|
#simplify iff env 0 (∀ (x : T), P x ↔ Q x) → P x
|
||||||
#simplify iff env 0 (∀ (x : T), P x ↔ Q x) → P x
|
|
||||||
#simplify iff env 0 ∀ (x y : T), (∀ (x : T), P x ↔ Q x) → P x
|
#simplify iff env 0 ∀ (x y : T), (∀ (x : T), P x ↔ Q x) → P x
|
||||||
|
|
||||||
|
#simplify iff env 0 ∀ (x z : T), x = z → P x
|
||||||
|
#simplify iff env 0 ∀ (x y z : T), x = y → y = z → P x
|
||||||
#simplify iff env 0 ∀ (x z : T), x = z → (∀ (w : T), P w ↔ Q w) → P x
|
#simplify iff env 0 ∀ (x z : T), x = z → (∀ (w : T), P w ↔ Q w) → P x
|
||||||
|
|
|
@ -8,6 +8,7 @@ T → T → x = y → P y
|
||||||
Prop → (∀ (x : T), P x ↔ Q x) → Prop → Q x
|
Prop → (∀ (x : T), P x ↔ Q x) → Prop → Q x
|
||||||
∀ (x_1 : Prop), (∀ (x : T), P x ↔ Q x) → x_1 ∨ Q x
|
∀ (x_1 : Prop), (∀ (x : T), P x ↔ Q x) → x_1 ∨ Q x
|
||||||
(∀ (x : T), P x ↔ Q x) → Q x
|
(∀ (x : T), P x ↔ Q x) → Q x
|
||||||
(∀ (x : T), P x ↔ Q x) → Q x
|
|
||||||
∀ (x : T), T → (∀ (x : T), P x ↔ Q x) → Q x
|
∀ (x : T), T → (∀ (x : T), P x ↔ Q x) → Q x
|
||||||
|
∀ (x x_1 : T), x = x_1 → P x_1
|
||||||
|
∀ (x x_1 x_2 : T), x = x_1 → x_1 = x_2 → P x_2
|
||||||
∀ (x x_1 : T), x = x_1 → (∀ (w : T), P w ↔ Q w) → Q x_1
|
∀ (x x_1 : T), x = x_1 → (∀ (w : T), P w ↔ Q w) → Q x_1
|
||||||
|
|
Loading…
Reference in a new issue