feat(builtin/congr): add congruence theorems for contextual simplification

Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
This commit is contained in:
Leonardo de Moura 2014-01-11 13:37:36 -08:00
parent 53537d0684
commit a0a92f11b7
3 changed files with 109 additions and 0 deletions

View file

@ -94,6 +94,7 @@ add_theory("Int.lean" "${CMAKE_CURRENT_BINARY_DIR}/if_then_else.olean")
add_theory("Real.lean" "${CMAKE_CURRENT_BINARY_DIR}/Int.olean") add_theory("Real.lean" "${CMAKE_CURRENT_BINARY_DIR}/Int.olean")
add_theory("specialfn.lean" "${CMAKE_CURRENT_BINARY_DIR}/Real.olean") add_theory("specialfn.lean" "${CMAKE_CURRENT_BINARY_DIR}/Real.olean")
add_theory("cast.lean" "${CMAKE_CURRENT_BINARY_DIR}/Nat.olean") add_theory("cast.lean" "${CMAKE_CURRENT_BINARY_DIR}/Nat.olean")
add_theory("congr.lean" "${CMAKE_CURRENT_BINARY_DIR}/Nat.olean")
update_interface("kernel.olean" "kernel" "-n") update_interface("kernel.olean" "kernel" "-n")
update_interface("Nat.olean" "library/arith" "-n") update_interface("Nat.olean" "library/arith" "-n")

108
src/builtin/congr.lean Normal file
View file

@ -0,0 +1,108 @@
-- Congruence theorems for contextual simplification
-- Simplify a → b, by first simplifying a to c using the fact that ¬ b is true, and then
-- b to d using the fact that c is true
theorem imp_congrr {a b c d : Bool} (H_ac : ∀ (H_nb : ¬ b), a = c) (H_bd : ∀ (H_c : c), b = d) : (a → b) = (c → d)
:= or_elim (em b)
(λ H_b : b,
or_elim (em c)
(λ H_c : c,
calc (a → b) = (a → true) : { eqt_intro H_b }
... = true : imp_truer a
... = (c → true) : symm (imp_truer c)
... = (c → b) : { symm (eqt_intro H_b) }
... = (c → d) : { H_bd H_c })
(λ H_nc : ¬ c,
calc (a → b) = (a → true) : { eqt_intro H_b }
... = true : imp_truer a
... = (false → d) : symm (imp_falsel d)
... = (c → d) : { symm (eqf_intro H_nc) }))
(λ H_nb : ¬ b,
or_elim (em c)
(λ H_c : c,
calc (a → b) = (c → b) : { H_ac H_nb }
... = (c → d) : { H_bd H_c })
(λ H_nc : ¬ c,
calc (a → b) = (c → b) : { H_ac H_nb }
... = (false → b) : { eqf_intro H_nc }
... = true : imp_falsel b
... = (false → d) : symm (imp_falsel d)
... = (c → d) : { symm (eqf_intro H_nc) }))
-- Simplify a → b, by first simplifying b to d using the fact that a is true, and then
-- b to d using the fact that ¬ d is true.
-- This kind of congruence seems to be useful in very rare cases.
theorem imp_congrl {a b c d : Bool} (H_ac : ∀ (H_nd : ¬ d), a = c) (H_bd : ∀ (H_a : a), b = d) : (a → b) = (c → d)
:= or_elim (em a)
(λ H_a : a,
or_elim (em d)
(λ H_d : d,
calc (a → b) = (a → d) : { H_bd H_a }
... = (a → true) : { eqt_intro H_d }
... = true : imp_truer a
... = (c → true) : symm (imp_truer c)
... = (c → d) : { symm (eqt_intro H_d) })
(λ H_nd : ¬ d,
calc (a → b) = (c → b) : { H_ac H_nd }
... = (c → d) : { H_bd H_a }))
(λ H_na : ¬ a,
or_elim (em d)
(λ H_d : d,
calc (a → b) = (false → b) : { eqf_intro H_na }
... = true : imp_falsel b
... = (c → true) : symm (imp_truer c)
... = (c → d) : { symm (eqt_intro H_d) })
(λ H_nd : ¬ d,
calc (a → b) = (false → b) : { eqf_intro H_na }
... = true : imp_falsel b
... = (false → d) : symm (imp_falsel d)
... = (a → d) : { symm (eqf_intro H_na) }
... = (c → d) : { H_ac H_nd }))
-- (Common case) simplify a to c, and then b to d using the fact that c is true
theorem imp_congr {a b c d : Bool} (H_ac : a = c) (H_bd : ∀ (H_c : c), b = d) : (a → b) = (c → d)
:= imp_congrr (λ H, H_ac) H_bd
-- In the following theorems we are using the fact that a b is defined as ¬ a → b
set_opaque or false
theorem or_congrr {a b c d : Bool} (H_ac : ∀ (H_nb : ¬ b), a = c) (H_bd : ∀ (H_nc : ¬ c), b = d) : (a b) = (c d)
:= imp_congrr (λ H_nb : ¬ b, congr2 not (H_ac H_nb)) H_bd
theorem or_congrl {a b c d : Bool} (H_ac : ∀ (H_nd : ¬ d), a = c) (H_bd : ∀ (H_na : ¬ a), b = d) : (a b) = (c d)
:= imp_congrl (λ H_nd : ¬ d, congr2 not (H_ac H_nd)) H_bd
set_opaque or true
-- (Common case) simplify a to c, and then b to d using the fact that ¬ c is true
theorem or_congr {a b c d : Bool} (H_ac : a = c) (H_bd : ∀ (H_nc : ¬ c), b = d) : (a b) = (c d)
:= or_congrr (λ H, H_ac) H_bd
-- In the following theorems we are using the fact hat a ∧ b is defined as ¬ (a → ¬ b)
set_opaque and false
theorem and_congrr {a b c d : Bool} (H_ac : ∀ (H_b : b), a = c) (H_bd : ∀ (H_c : c), b = d) : (a ∧ b) = (c ∧ d)
:= congr2 not (imp_congrr (λ (H_nnb : ¬ ¬ b), H_ac (not_not_elim H_nnb)) (λ H_c : c, congr2 not (H_bd H_c)))
theorem and_congrl {a b c d : Bool} (H_ac : ∀ (H_d : d), a = c) (H_bd : ∀ (H_a : a), b = d) : (a ∧ b) = (c ∧ d)
:= congr2 not (imp_congrl (λ (H_nnd : ¬ ¬ d), H_ac (not_not_elim H_nnd)) (λ H_a : a, congr2 not (H_bd H_a)))
set_opaque and true
-- (Common case) simplify a to c, and then b to d using the fact that c is true
theorem and_congr {a b c d : Bool} (H_ac : a = c) (H_bd : ∀ (H_c : c), b = d) : (a ∧ b) = (c ∧ d)
:= and_congrr (λ H, H_ac) H_bd
-- Perhaps, we should move the following theorem to the if_then_else module
import if_then_else
-- Simplify the then branch using the fact that c is true, and the else branch that c is false
theorem if_congr {A : TypeU} {b c : Bool} {x y u v : A} (H_bc : b = c) (H_xu : ∀ (H_c : c), x = u) (H_yv : ∀ (H_nc : ¬ c), y = v) :
(if b then x else y) = (if c then u else v)
:= or_elim (em c)
(λ H_c : c, calc (if b then x else y) = (if c then x else y) : { H_bc }
... = (if true then x else y) : { eqt_intro H_c }
... = x : if_true _ _
... = u : H_xu H_c
... = (if true then u else v) : symm (if_true _ _)
... = (if c then u else v) : { symm (eqt_intro H_c) })
(λ H_nc : ¬ c, calc (if b then x else y) = (if c then x else y) : { H_bc }
... = (if false then x else y) : { eqf_intro H_nc }
... = y : if_false _ _
... = v : H_yv H_nc
... = (if false then u else v) : symm (if_false _ _)
... = (if c then u else v) : { symm (eqf_intro H_nc) })

BIN
src/builtin/obj/congr.olean Normal file

Binary file not shown.