feat(library/algebra/ordered_group): improve performance using rewrite tactic
This commit is contained in:
parent
18ab9ce4e1
commit
a1066ebdf4
1 changed files with 70 additions and 46 deletions
|
@ -48,13 +48,24 @@ section
|
|||
lt_of_le_of_ne H1 H2
|
||||
|
||||
theorem add_lt_add_right (H : a < b) (c : A) : a + c < b + c :=
|
||||
(add.comm c a) ▸ (add.comm c b) ▸ (add_lt_add_left H c)
|
||||
begin
|
||||
rewrite [add.comm, {b + _}add.comm],
|
||||
exact (add_lt_add_left H c)
|
||||
end
|
||||
|
||||
theorem le_add_of_nonneg_right (H : b ≥ 0) : a ≤ a + b :=
|
||||
!add_zero ▸ add_le_add_left H a
|
||||
begin
|
||||
have H1 : a + b ≥ a + 0, from add_le_add_left H a,
|
||||
rewrite add_zero at H1,
|
||||
exact H1
|
||||
end
|
||||
|
||||
theorem le_add_of_nonneg_left (H : b ≥ 0) : a ≤ b + a :=
|
||||
!zero_add ▸ add_le_add_right H a
|
||||
begin
|
||||
have H1 : 0 + a ≤ b + a, from add_le_add_right H a,
|
||||
rewrite zero_add at H1,
|
||||
exact H1
|
||||
end
|
||||
|
||||
theorem add_lt_add (Hab : a < b) (Hcd : c < d) : a + c < b + d :=
|
||||
lt.trans (add_lt_add_right Hab c) (add_lt_add_left Hcd b)
|
||||
|
@ -74,7 +85,7 @@ section
|
|||
!ordered_cancel_comm_monoid.le_of_add_le_add_left H
|
||||
|
||||
theorem le_of_add_le_add_right (H : a + b ≤ c + b) : a ≤ c :=
|
||||
le_of_add_le_add_left ((add.comm a b) ▸ (add.comm c b) ▸ H)
|
||||
le_of_add_le_add_left (show b + a ≤ b + c, begin rewrite [add.comm, {b + _}add.comm], exact H end)
|
||||
|
||||
theorem lt_of_add_lt_add_left (H : a + b < a + c) : b < c :=
|
||||
have H1 : b ≤ c, from le_of_add_le_add_left (le_of_lt H),
|
||||
|
@ -129,19 +140,21 @@ section
|
|||
(assume Hab : a + b = 0,
|
||||
have Ha' : a ≤ 0, from
|
||||
calc
|
||||
a = a + 0 : add_zero
|
||||
a = a + 0 : by rewrite add_zero
|
||||
... ≤ a + b : add_le_add_left Hb
|
||||
... = 0 : Hab,
|
||||
... = 0 : Hab,
|
||||
have Haz : a = 0, from le.antisymm Ha' Ha,
|
||||
have Hb' : b ≤ 0, from
|
||||
calc
|
||||
b = 0 + b : zero_add
|
||||
b = 0 + b : by rewrite zero_add
|
||||
... ≤ a + b : add_le_add_right Ha
|
||||
... = 0 : Hab,
|
||||
... = 0 : Hab,
|
||||
have Hbz : b = 0, from le.antisymm Hb' Hb,
|
||||
and.intro Haz Hbz)
|
||||
(assume Hab : a = 0 ∧ b = 0,
|
||||
and.elim Hab (λ Ha Hb, by rewrite [Ha, Hb, add_zero]))
|
||||
match Hab with
|
||||
| and.intro Ha' Hb' := by rewrite [Ha', Hb', add_zero]
|
||||
end)
|
||||
|
||||
theorem le_add_of_nonneg_of_le (Ha : 0 ≤ a) (Hbc : b ≤ c) : b ≤ a + c :=
|
||||
!zero_add ▸ add_le_add Ha Hbc
|
||||
|
@ -291,61 +304,64 @@ section
|
|||
!neg_add_cancel_left ▸ H
|
||||
|
||||
theorem add_le_iff_le_sub_left : a + b ≤ c ↔ b ≤ c - a :=
|
||||
!add.comm ▸ !add_le_iff_le_neg_add
|
||||
by rewrite [sub_eq_add_neg, {c+_}add.comm]; apply add_le_iff_le_neg_add
|
||||
|
||||
theorem add_le_iff_le_sub_right : a + b ≤ c ↔ a ≤ c - b :=
|
||||
have H: a + b ≤ c ↔ a + b - b ≤ c - b, from iff.symm (!add_le_add_right_iff),
|
||||
!add_neg_cancel_right ▸ H
|
||||
|
||||
theorem le_add_iff_neg_add_le : a ≤ b + c ↔ -b + a ≤ c :=
|
||||
have H: a ≤ b + c ↔ -b + a ≤ -b + (b + c), from iff.symm (!add_le_add_left_iff),
|
||||
!neg_add_cancel_left ▸ H
|
||||
assert H: a ≤ b + c ↔ -b + a ≤ -b + (b + c), from iff.symm (!add_le_add_left_iff),
|
||||
by rewrite neg_add_cancel_left at H; exact H
|
||||
|
||||
theorem le_add_iff_sub_left_le : a ≤ b + c ↔ a - b ≤ c :=
|
||||
!add.comm ▸ !le_add_iff_neg_add_le
|
||||
by rewrite [sub_eq_add_neg, {a+_}add.comm]; apply le_add_iff_neg_add_le
|
||||
|
||||
theorem le_add_iff_sub_right_le : a ≤ b + c ↔ a - c ≤ b :=
|
||||
have H: a ≤ b + c ↔ a - c ≤ b + c - c, from iff.symm (!add_le_add_right_iff),
|
||||
!add_neg_cancel_right ▸ H
|
||||
assert H: a ≤ b + c ↔ a - c ≤ b + c - c, from iff.symm (!add_le_add_right_iff),
|
||||
by rewrite add_neg_cancel_right at H; exact H
|
||||
|
||||
theorem add_lt_iff_lt_neg_add_left : a + b < c ↔ b < -a + c :=
|
||||
have H: a + b < c ↔ -a + (a + b) < -a + c, from iff.symm (!add_lt_add_left_iff),
|
||||
!neg_add_cancel_left ▸ H
|
||||
assert H: a + b < c ↔ -a + (a + b) < -a + c, from iff.symm (!add_lt_add_left_iff),
|
||||
begin rewrite neg_add_cancel_left at H, exact H end
|
||||
|
||||
theorem add_lt_iff_lt_neg_add_right : a + b < c ↔ a < -b + c :=
|
||||
!add.comm ▸ !add_lt_iff_lt_neg_add_left
|
||||
by rewrite add.comm; apply add_lt_iff_lt_neg_add_left
|
||||
|
||||
theorem add_lt_iff_lt_sub_left : a + b < c ↔ b < c - a :=
|
||||
!add.comm ▸ !add_lt_iff_lt_neg_add_left
|
||||
begin
|
||||
rewrite [sub_eq_add_neg, {c+_}add.comm],
|
||||
apply add_lt_iff_lt_neg_add_left
|
||||
end
|
||||
|
||||
theorem add_lt_add_iff_lt_sub_right : a + b < c ↔ a < c - b :=
|
||||
have H: a + b < c ↔ a + b - b < c - b, from iff.symm (!add_lt_add_right_iff),
|
||||
!add_neg_cancel_right ▸ H
|
||||
assert H: a + b < c ↔ a + b - b < c - b, from iff.symm (!add_lt_add_right_iff),
|
||||
by rewrite add_neg_cancel_right at H; exact H
|
||||
|
||||
theorem lt_add_iff_neg_add_lt_left : a < b + c ↔ -b + a < c :=
|
||||
have H: a < b + c ↔ -b + a < -b + (b + c), from iff.symm (!add_lt_add_left_iff),
|
||||
!neg_add_cancel_left ▸ H
|
||||
assert H: a < b + c ↔ -b + a < -b + (b + c), from iff.symm (!add_lt_add_left_iff),
|
||||
by rewrite neg_add_cancel_left at H; exact H
|
||||
|
||||
theorem lt_add_iff_neg_add_lt_right : a < b + c ↔ -c + a < b :=
|
||||
!add.comm ▸ !lt_add_iff_neg_add_lt_left
|
||||
by rewrite add.comm; apply lt_add_iff_neg_add_lt_left
|
||||
|
||||
theorem lt_add_iff_sub_lt_left : a < b + c ↔ a - b < c :=
|
||||
!add.comm ▸ !lt_add_iff_neg_add_lt_left
|
||||
by rewrite [sub_eq_add_neg, {a + _}add.comm]; apply lt_add_iff_neg_add_lt_left
|
||||
|
||||
theorem lt_add_iff_sub_lt_right : a < b + c ↔ a - c < b :=
|
||||
!add.comm ▸ !lt_add_iff_sub_lt_left
|
||||
by rewrite add.comm; apply lt_add_iff_sub_lt_left
|
||||
|
||||
-- TODO: the Isabelle library has varations on a + b ≤ b ↔ a ≤ 0
|
||||
theorem le_iff_le_of_sub_eq_sub {a b c d : A} (H : a - b = c - d) : a ≤ b ↔ c ≤ d :=
|
||||
calc
|
||||
a ≤ b ↔ a - b ≤ 0 : iff.symm (sub_nonpos_iff_le a b)
|
||||
... = (c - d ≤ 0) : H
|
||||
... = (c - d ≤ 0) : by rewrite H
|
||||
... ↔ c ≤ d : sub_nonpos_iff_le c d
|
||||
|
||||
theorem lt_iff_lt_of_sub_eq_sub {a b c d : A} (H : a - b = c - d) : a < b ↔ c < d :=
|
||||
calc
|
||||
a < b ↔ a - b < 0 : iff.symm (sub_neg_iff_lt a b)
|
||||
... = (c - d < 0) : H
|
||||
... = (c - d < 0) : by rewrite H
|
||||
... ↔ c < d : sub_neg_iff_lt c d
|
||||
|
||||
theorem sub_le_sub_left {a b : A} (H : a ≤ b) (c : A) : c - b ≤ c - a :=
|
||||
|
@ -374,13 +390,13 @@ section
|
|||
calc
|
||||
a - b = a + -b : rfl
|
||||
... ≤ a + 0 : add_le_add_left (neg_nonpos_of_nonneg H)
|
||||
... = a : add_zero
|
||||
... = a : by rewrite add_zero
|
||||
|
||||
theorem sub_lt_self (a : A) {b : A} (H : b > 0) : a - b < a :=
|
||||
calc
|
||||
a - b = a + -b : rfl
|
||||
... < a + 0 : add_lt_add_left (neg_neg_of_pos H)
|
||||
... = a : add_zero
|
||||
... = a : by rewrite add_zero
|
||||
end
|
||||
|
||||
structure decidable_linear_ordered_comm_group [class] (A : Type)
|
||||
|
@ -450,7 +466,7 @@ section
|
|||
iff.intro eq_zero_of_abs_eq_zero (assume H, congr_arg abs H ⬝ !abs_zero)
|
||||
|
||||
theorem abs_pos_of_pos (H : a > 0) : abs a > 0 :=
|
||||
(abs_of_pos H)⁻¹ ▸ H
|
||||
by rewrite (abs_of_pos H); exact H
|
||||
|
||||
theorem abs_pos_of_neg (H : a < 0) : abs a > 0 :=
|
||||
!abs_neg ▸ abs_pos_of_pos (neg_pos_of_neg H)
|
||||
|
@ -479,17 +495,17 @@ section
|
|||
(assume H3 : b ≥ 0,
|
||||
calc
|
||||
abs (a + b) ≤ abs (a + b) : le.refl
|
||||
... = a + b : abs_of_nonneg H1
|
||||
... = abs a + b : abs_of_nonneg H2
|
||||
... = abs a + abs b : abs_of_nonneg H3)
|
||||
... = a + b : by rewrite (abs_of_nonneg H1)
|
||||
... = abs a + b : by rewrite (abs_of_nonneg H2)
|
||||
... = abs a + abs b : by rewrite (abs_of_nonneg H3))
|
||||
(assume H3 : ¬ b ≥ 0,
|
||||
have H4 : b ≤ 0, from le_of_lt (lt_of_not_le H3),
|
||||
assert H4 : b ≤ 0, from le_of_lt (lt_of_not_le H3),
|
||||
calc
|
||||
abs (a + b) = a + b : abs_of_nonneg H1
|
||||
... = abs a + b : abs_of_nonneg H2
|
||||
abs (a + b) = a + b : by rewrite (abs_of_nonneg H1)
|
||||
... = abs a + b : by rewrite (abs_of_nonneg H2)
|
||||
... ≤ abs a + 0 : add_le_add_left H4
|
||||
... ≤ abs a + -b : add_le_add_left (neg_nonneg_of_nonpos H4)
|
||||
... = abs a + abs b : abs_of_nonpos H4)
|
||||
... = abs a + abs b : by rewrite (abs_of_nonpos H4))
|
||||
|
||||
private lemma aux2 {a b : A} (H1 : a + b ≥ 0) : abs (a + b) ≤ abs a + abs b :=
|
||||
or.elim (le.total b 0)
|
||||
|
@ -500,27 +516,35 @@ section
|
|||
not_lt_of_le H1 H5,
|
||||
aux1 H1 (le_of_not_lt H3))
|
||||
(assume H2 : 0 ≤ b,
|
||||
have H3 : abs (b + a) ≤ abs b + abs a, from aux1 (add.comm a b ▸ H1) H2,
|
||||
add.comm b a ▸ (add.comm (abs b) (abs a)) ▸ H3)
|
||||
begin
|
||||
have H3 : abs (b + a) ≤ abs b + abs a,
|
||||
begin
|
||||
rewrite add.comm at H1,
|
||||
exact (aux1 H1 H2)
|
||||
end,
|
||||
rewrite [add.comm, {abs a + _}add.comm],
|
||||
exact H3
|
||||
end)
|
||||
|
||||
theorem abs_add_le_abs_add_abs (a b : A) : abs (a + b) ≤ abs a + abs b :=
|
||||
or.elim (le.total 0 (a + b))
|
||||
(assume H2 : 0 ≤ a + b, aux2 H2)
|
||||
(assume H2 : a + b ≤ 0,
|
||||
have H3 : -a + -b = -(a + b), by rewrite neg_add,
|
||||
have H4 : -(a + b) ≥ 0, from iff.mp' (neg_nonneg_iff_nonpos (a+b)) H2,
|
||||
assert H3 : -a + -b = -(a + b), by rewrite neg_add,
|
||||
assert H4 : -(a + b) ≥ 0, from iff.mp' (neg_nonneg_iff_nonpos (a+b)) H2,
|
||||
have H5 : -a + -b ≥ 0, begin rewrite -H3 at H4, exact H4 end,
|
||||
calc
|
||||
abs (a + b) = abs (-a + -b) : by rewrite [-abs_neg, neg_add]
|
||||
... ≤ abs (-a) + abs (-b) : aux2 (H3⁻¹ ▸ H4)
|
||||
... ≤ abs (-a) + abs (-b) : aux2 H5
|
||||
... = abs a + abs b : by rewrite *abs_neg)
|
||||
end
|
||||
|
||||
theorem abs_sub_abs_le_abs_sub (a b : A) : abs a - abs b ≤ abs (a - b) :=
|
||||
have H1 : abs a - abs b + abs b ≤ abs (a - b) + abs b, from
|
||||
calc
|
||||
abs a - abs b + abs b = abs a : sub_add_cancel
|
||||
... = abs (a - b + b) : sub_add_cancel
|
||||
... ≤ abs (a - b) + abs b : algebra.abs_add_le_abs_add_abs,
|
||||
abs a - abs b + abs b = abs a : by rewrite sub_add_cancel
|
||||
... = abs (a - b + b) : by rewrite sub_add_cancel
|
||||
... ≤ abs (a - b) + abs b : abs_add_le_abs_add_abs,
|
||||
algebra.le_of_add_le_add_right H1
|
||||
end
|
||||
|
||||
|
|
Loading…
Reference in a new issue