fix(tests): fix tests to reflect changes

This commit is contained in:
Floris van Doorn 2015-05-26 21:17:46 -04:00 committed by Leonardo de Moura
parent 43bcdd7994
commit a127a676eb
9 changed files with 20 additions and 26 deletions

View file

@ -1,9 +1,9 @@
definition category.id [reducible] : Π {ob : Type} [C : precategory ob] {a : ob}, hom a a
λ (ob : Type) (C : precategory ob) (a : ob), ID a
definition function.id [reducible] : Π {A : Type}, A → A
is_typeof
λ (A : Type) (a : A), a
-----------
definition category.id [reducible] : Π {ob : Type} [C : precategory ob] {a : ob}, hom a a
λ (ob : Type) (C : precategory ob) (a : ob), ID a
definition function.id [reducible] : Π {A : Type}, A → A
is_typeof
λ (A : Type) (a : A), a

View file

@ -3,7 +3,7 @@ x : S¹
⊢ bool
626b.hlean:4:50: error: don't know how to synthesize placeholder
x : S¹
⊢ eq.transport (λ (a : S¹), bool) loop ?M_1 = ?M_1
⊢ eq.pathover (λ (a : S¹), bool) ?M_1 loop ?M_1
626b.hlean:4:32: error: failed to add declaration 'f' to environment, value has metavariables
remark: set 'formatter.hide_full_terms' to false to see the complete term
λ (x : S¹),

View file

@ -3,4 +3,4 @@ definition tst :
definition tst :
foo
definition tst1 : num
is_typeof num 10
(λ (A : Type₁) (a : A), a) num 10

View file

@ -5,5 +5,5 @@ definition my_elim {A P : Type} {R : A → A → Type} (Pc : A → P)
begin
induction x,
exact (Pc a),
refine (!tr_constant ⬝ Pp H)
refine (pathover_of_eq (Pp H))
end

View file

@ -4,5 +4,5 @@ definition my_elim {A P : Type} {R : A → A → Type} (Pc : A → P)
begin
induction x,
exact (Pc a),
refine (!tr_constant ⬝ Pp H)
refine (pathover_of_eq (Pp H))
end

View file

@ -86,7 +86,7 @@ namespace pi
(Π(b : B a), transportD B (λ(a : A) (b : B a), C ⟨a, b⟩) p b (f b) = g (eq.transport B p b)) -/
definition dpath_pi_sigma {C : (Σa, B a) → Type} (p : a = a')
(f : Π(b : B a), C ⟨a, b⟩) (g : Π(b' : B a'), C ⟨a', b'⟩) :
(Π(b : B a), (sigma.sigma_eq p idp) ▸ (f b) = g (p ▸ b)) ≃ (Π(b : B a), p ▸D (f b) = g (p ▸ b)) :=
(Π(b : B a), (sigma.sigma_eq p !pathover_tr) ▸ (f b) = g (p ▸ b)) ≃ (Π(b : B a), p ▸D (f b) = g (p ▸ b)) :=
eq.rec_on p (λg, !equiv.refl) g
end

View file

@ -1,6 +1,6 @@
import hit.circle
open circle eq int
open circle eq int pi
attribute circle.rec [recursor]
@ -8,18 +8,14 @@ protected definition my_decode {x : circle} (c : circle.code x) : base = x :=
begin
induction x,
{ revert c, exact power loop },
{ apply eq_of_homotopy, intro a,
refine !arrow.arrow_transport ⬝ !transport_eq_r ⬝ _,
rewrite [transport_code_loop_inv,power_con,succ_pred]
}
{ apply arrow_pathover_left, intro b, apply concato_eq, apply pathover_eq_r,
rewrite [power_con,transport_code_loop]},
end
protected definition my_decode' {x : circle} : circle.code x → base = x :=
begin
induction x,
{ exact power loop},
{ apply eq_of_homotopy, intro a,
refine !arrow.arrow_transport ⬝ !transport_eq_r ⬝ _,
rewrite [transport_code_loop_inv,power_con,succ_pred]
}
{ apply arrow_pathover_left, intro b, apply concato_eq, apply pathover_eq_r,
rewrite [power_con,transport_code_loop]},
end

View file

@ -1,6 +1,6 @@
-- HoTT
import hit.circle
open circle eq int
open circle eq int pi
attribute circle.rec circle.elim [recursor 4]
@ -12,10 +12,9 @@ begin
end
protected definition my_decode {x : circle} : my_code x → base = x :=
begin
induction x,
{ exact power loop},
{ apply eq_of_homotopy, intro a,
refine !arrow.arrow_transport ⬝ !transport_eq_r ⬝ _,
rewrite [transport_code_loop_inv,power_con,succ_pred]}
end
begin
induction x,
{ exact power loop},
{ apply arrow_pathover_left, intro b, apply concato_eq, apply pathover_eq_r,
rewrite [power_con,transport_code_loop]},
end

View file

@ -1,5 +1,4 @@
import cubical.pathover
open cubical
open eq
set_option pp.implicit true
set_option pp.universes true