diff --git a/library/hott/equiv.lean b/library/hott/equiv.lean index 034f46484..c5523d2a0 100644 --- a/library/hott/equiv.lean +++ b/library/hott/equiv.lean @@ -3,7 +3,7 @@ -- Author: Jeremy Avigad -- Ported from Coq HoTT import .path -open path +open path function -- Equivalences -- ------------ @@ -15,27 +15,32 @@ definition Sect {A B : Type} (s : A → B) (r : B → A) := Πx : A, r (s x) ≈ -- Structure IsEquiv -inductive IsEquiv {A B : Type} (f : A → B) := +inductive IsEquiv [class] {A B : Type} (f : A → B) := IsEquiv_mk : Π - (equiv_inv : B → A) - (eisretr : Sect equiv_inv f) - (eissect : Sect f equiv_inv) - (eisadj : Πx, eisretr (f x) ≈ ap f (eissect x)), + (inv : B → A) + (retr : Sect inv f) + (sect : Sect f inv) + (adj : Πx, retr (f x) ≈ ap f (sect x)), IsEquiv f -definition equiv_inv {A B : Type} {f : A → B} (H : IsEquiv f) : B → A := -IsEquiv.rec (λequiv_inv eisretr eissect eisadj, equiv_inv) H --- TODO: note: does not type check without giving the type -definition eisretr {A B : Type} {f : A → B} (H : IsEquiv f) : Sect (equiv_inv H) f := -IsEquiv.rec (λequiv_inv eisretr eissect eisadj, eisretr) H +namespace IsEquiv -definition eissect {A B : Type} {f : A → B} (H : IsEquiv f) : Sect f (equiv_inv H) := -IsEquiv.rec (λequiv_inv eisretr eissect eisadj, eissect) H + definition inv {A B : Type} {f : A → B} (H : IsEquiv f) : B → A := + IsEquiv.rec (λinv retr sect adj, inv) H -definition eisadj {A B : Type} {f : A → B} (H : IsEquiv f) : - Πx, eisretr H (f x) ≈ ap f (eissect H x) := -IsEquiv.rec (λequiv_inv eisretr eissect eisadj, eisadj) H + -- TODO: note: does not type check without giving the type + definition retr {A B : Type} {f : A → B} (H : IsEquiv f) : Sect (inv H) f := + IsEquiv.rec (λinv retr sect adj, retr) H + + definition sect {A B : Type} {f : A → B} (H : IsEquiv f) : Sect f (inv H) := + IsEquiv.rec (λinv retr sect adj, sect) H + + definition adj {A B : Type} {f : A → B} (H : IsEquiv f) : + Πx, retr H (f x) ≈ ap f (sect H x) := + IsEquiv.rec (λinv retr sect adj, adj) H + +end IsEquiv -- Structure Equiv @@ -45,12 +50,140 @@ Equiv_mk : Π (equiv_isequiv : IsEquiv equiv_fun), Equiv A B -definition equiv_fun [coercion] {A B : Type} (e : Equiv A B) : A → B := -Equiv.rec (λequiv_fun equiv_isequiv, equiv_fun) e +namespace Equiv -definition equiv_isequiv [coercion] {A B : Type} (e : Equiv A B) : IsEquiv (equiv_fun e) := -Equiv.rec (λequiv_fun equiv_isequiv, equiv_isequiv) e + definition equiv_fun [coercion] {A B : Type} (e : Equiv A B) : A → B := + Equiv.rec (λequiv_fun equiv_isequiv, equiv_fun) e --- TODO: better symbol -infix `<~>`:25 := Equiv -notation H ⁻¹ := equiv_inv H + definition equiv_isequiv [coercion] {A B : Type} (e : Equiv A B) : IsEquiv (equiv_fun e) := + Equiv.rec (λequiv_fun equiv_isequiv, equiv_isequiv) e + + infix `≃`:25 := Equiv + notation e `⁻¹` := IsEquiv.inv e + +end Equiv + + -- Some instances and closure properties of equivalences + +namespace IsEquiv + variables {A B C : Type} {f : A → B} {g : B → C} {f' : A → B} + + -- The identity function is an equivalence. + + definition idIsEquiv [instance] : (@IsEquiv A A id) := IsEquiv_mk id (λa, idp) (λa, idp) (λa, idp) + + -- The composition of two equivalences is, again, an equivalence. + + definition comp_closed [instance] (Hf : IsEquiv f) (Hg : IsEquiv g) : (IsEquiv (g ∘ f)) := + IsEquiv_mk ((inv Hf) ∘ (inv Hg)) + (λc, ap g (retr Hf ((inv Hg) c)) @ retr Hg c) + (λa, ap (inv Hf) (sect Hg (f a)) @ sect Hf a) + (λa, (whiskerL _ (adj Hg (f a))) @ + (ap_pp g _ _)^ @ + ap02 g (concat_A1p (retr Hf) (sect Hg (f a))^ @ + (ap_compose (inv Hf) f _ @@ adj Hf a) @ + (ap_pp f _ _)^ + ) @ + (ap_compose f g _)^ + ) + + -- Any function equal to an equivalence is an equivlance as well. + definition path_closed (Hf : IsEquiv f) (Heq : f ≈ f') : (IsEquiv f') := + path.induction_on Heq Hf + + -- Any function pointwise equal to an equivalence is an equivalence as well. + definition homotopic (Hf : IsEquiv f) (Heq : f ∼ f') : (IsEquiv f') := + let sect' := (λ b, (Heq (inv Hf b))^ @ retr Hf b) in + let retr' := (λ a, (ap (inv Hf) (Heq a))^ @ sect Hf a) in + let adj' := (λ (a : A), + let ff'a := Heq a in + let invf := inv Hf in + let secta := sect Hf a in + let retrfa := retr Hf (f a) in + let retrf'a := retr Hf (f' a) in + have eq1 : ap f secta @ ff'a ≈ ap f (ap invf ff'a) @ retr Hf (f' a), + from calc ap f secta @ ff'a + ≈ retrfa @ ff'a : (ap _ (adj Hf _ ))^ + ... ≈ ap (f ∘ invf) ff'a @ retrf'a : !concat_A1p^ + ... ≈ ap f (ap invf ff'a) @ retr Hf (f' a) : {ap_compose invf f ff'a}, + have eq2 : retrf'a ≈ Heq (invf (f' a)) @ ((ap f' (ap invf ff'a))^ @ ap f' secta), + from calc retrf'a + ≈ (ap f (ap invf ff'a))^ @ (ap f secta @ ff'a) : moveL_Vp _ _ _ (eq1^) + ... ≈ ap f (ap invf ff'a)^ @ (ap f secta @ Heq a) : {ap_V invf ff'a} + ... ≈ ap f (ap invf ff'a)^ @ (Heq (invf (f a)) @ ap f' secta) : {!concat_Ap} + ... ≈ ap f (ap invf ff'a)^ @ Heq (invf (f a)) @ ap f' secta : {!concat_pp_p^} + ... ≈ ap f ((ap invf ff'a)^) @ Heq (invf (f a)) @ ap f' secta : {!ap_V^} + ... ≈ Heq (invf (f' a)) @ ap f' ((ap invf ff'a)^) @ ap f' secta : {!concat_Ap} + ... ≈ Heq (invf (f' a)) @ (ap f' (ap invf ff'a))^ @ ap f' secta : {!ap_V} + ... ≈ Heq (invf (f' a)) @ ((ap f' (ap invf ff'a))^ @ ap f' secta) : !concat_pp_p, + have eq3 : (Heq (invf (f' a)))^ @ retr Hf (f' a) ≈ ap f' ((ap invf ff'a)^ @ secta), + from calc (Heq (invf (f' a)))^ @ retr Hf (f' a) + ≈ (ap f' (ap invf ff'a))^ @ ap f' secta : moveR_Vp _ _ _ eq2 + ... ≈ (ap f' ((ap invf ff'a)^)) @ ap f' secta : {!ap_V^} + ... ≈ ap f' ((ap invf ff'a)^ @ secta) : !ap_pp^, + eq3) in + IsEquiv_mk (inv Hf) sect' retr' adj' + + --TODO: Maybe wait until rewrite rules are available. + definition inv_closed (Hf : IsEquiv f) : (IsEquiv (inv Hf)) := + IsEquiv_mk sorry sorry sorry sorry + + definition cancel_R (Hf : IsEquiv f) (Hgf : IsEquiv (g ∘ f)) : (IsEquiv g) := + homotopic (comp_closed (inv_closed Hf) Hgf) (λb, ap g (retr Hf b)) + + definition cancel_L (Hg : IsEquiv g) (Hgf : IsEquiv (g ∘ f)) : (IsEquiv f) := + homotopic (comp_closed Hgf (inv_closed Hg)) (λa, sect Hg (f a)) + + definition transport (P : A → Type) {x y : A} (p : x ≈ y) : (IsEquiv (transport P p)) := + IsEquiv_mk (transport P (p^)) (transport_pV P p) (transport_Vp P p) (transport_pVp P p) + + --Rewrite rules + section + variables {Hf : IsEquiv f} + + definition moveR_M {x : A} {y : B} (p : x ≈ (inv Hf) y) : (f x ≈ y) := + ap f p @ retr Hf y + + definition moveL_M {x : A} {y : B} (p : (inv Hf) y ≈ x) : (y ≈ f x) := + (moveR_M (p^))^ + + definition moveR_V {x : B} {y : A} (p : x ≈ f y) : (inv Hf) x ≈ y := + ap (inv Hf) p @ sect Hf y + + definition moveL_V {x : B} {y : A} (p : f y ≈ x) : y ≈ (inv Hf) x := + (moveR_V (p^))^ + + end + +end IsEquiv + +namespace Equiv + + variables {A B C : Type} (eqf : A ≃ B) + + theorem id : A ≃ A := Equiv_mk id IsEquiv.idIsEquiv + + theorem compose (eqg: B ≃ C) : A ≃ C := + Equiv_mk ((equiv_fun eqg) ∘ (equiv_fun eqf)) + (IsEquiv.comp_closed (equiv_isequiv eqf) (equiv_isequiv eqg)) + + check IsEquiv.path_closed + + theorem path_closed (f' : A → B) (Heq : equiv_fun eqf ≈ f') : A ≃ B := + Equiv_mk f' (IsEquiv.path_closed (equiv_isequiv eqf) Heq) + + theorem inv_closed : B ≃ A := + Equiv_mk (IsEquiv.inv (equiv_isequiv eqf)) (IsEquiv.inv_closed (equiv_isequiv eqf)) + + theorem cancel_L {f : A → B} {g : B → C} + (Hf : IsEquiv f) (Hgf : IsEquiv (g ∘ f)) : B ≃ C := + Equiv_mk g (IsEquiv.cancel_R _ _) + + theorem cancel_R {f : A → B} {g : B → C} + (Hg : IsEquiv g) (Hgf : IsEquiv (g ∘ f)) : A ≃ B := + Equiv_mk f (!IsEquiv.cancel_L _ _) + + theorem transport (P : A → Type) {x y : A} {p : x ≈ y} : (P x) ≃ (P y) := + Equiv_mk (transport P p) (IsEquiv.transport P p) + +end Equiv