feat(library/data/finset): define intersection for finsets

This commit is contained in:
Leonardo de Moura 2015-04-10 16:45:25 -07:00
parent 49d6d43926
commit a24c0bf1db
2 changed files with 52 additions and 3 deletions

View file

@ -231,4 +231,53 @@ theorem empty_union (s : finset A) : ∅ s = s :=
calc ∅ s = s ∅ : union.comm
... = s : union_empty
end union
/- intersection -/
section intersection
variable [h : decidable_eq A]
include h
definition intersection (s₁ s₂ : finset A) : finset A :=
quot.lift_on₂ s₁ s₂
(λ l₁ l₂,
to_finset_of_nodup (list.intersection (elt_of l₁) (elt_of l₂))
(nodup_intersection_of_nodup _ (has_property l₁)))
(λ v₁ v₂ w₁ w₂ p₁ p₂, quot.sound (perm_intersection p₁ p₂))
notation s₁ ∩ s₂ := intersection s₁ s₂
theorem mem_of_mem_intersection_left {a : A} {s₁ s₂ : finset A} : a ∈ s₁ ∩ s₂ → a ∈ s₁ :=
quot.induction_on₂ s₁ s₂ (λ l₁ l₂ ainl₁l₂, list.mem_of_mem_intersection_left ainl₁l₂)
theorem mem_of_mem_intersection_right {a : A} {s₁ s₂ : finset A} : a ∈ s₁ ∩ s₂ → a ∈ s₂ :=
quot.induction_on₂ s₁ s₂ (λ l₁ l₂ ainl₁l₂, list.mem_of_mem_intersection_right ainl₁l₂)
theorem mem_intersection_of_mem_of_mem {a : A} {s₁ s₂ : finset A} : a ∈ s₁ → a ∈ s₂ → a ∈ s₁ ∩ s₂ :=
quot.induction_on₂ s₁ s₂ (λ l₁ l₂ ainl₁ ainl₂, list.mem_intersection_of_mem_of_mem ainl₁ ainl₂)
theorem mem_intersection_eq (a : A) (s₁ s₂ : finset A) : (a ∈ s₁ ∩ s₂) = (a ∈ s₁ ∧ a ∈ s₂) :=
propext (iff.intro
(λ h, and.intro (mem_of_mem_intersection_left h) (mem_of_mem_intersection_right h))
(λ h, mem_intersection_of_mem_of_mem (and.elim_left h) (and.elim_right h)))
theorem intersection.comm (s₁ s₂ : finset A) : s₁ ∩ s₂ = s₂ ∩ s₁ :=
ext (λ a, by rewrite [*mem_intersection_eq]; exact and.comm)
theorem intersection.assoc (s₁ s₂ s₃ : finset A) : (s₁ ∩ s₂) ∩ s₃ = s₁ ∩ (s₂ ∩ s₃) :=
ext (λ a, by rewrite [*mem_intersection_eq]; exact and.assoc)
theorem intersection_self (s : finset A) : s ∩ s = s :=
ext (λ a, iff.intro
(λ h, mem_of_mem_intersection_right h)
(λ h, mem_intersection_of_mem_of_mem h h))
theorem intersection_empty (s : finset A) : s ∩ ∅ = ∅ :=
ext (λ a, iff.intro
(λ h : a ∈ s ∩ ∅, absurd (mem_of_mem_intersection_right h) !not_mem_empty)
(λ h : a ∈ ∅, absurd h !not_mem_empty))
theorem empty_intersection (s : finset A) : ∅ ∩ s = ∅ :=
calc ∅ ∩ s = s ∩ ∅ : intersection.comm
... = ∅ : intersection_empty
end intersection
end finset

View file

@ -585,7 +585,7 @@ theorem mem_of_mem_intersection_right : ∀ {l₁ l₂} {a : A}, a ∈ intersect
(λ nbinl₂ : b ∉ l₂,
by rewrite [intersection_cons_of_not_mem _ nbinl₂ at i]; exact (mem_of_mem_intersection_right i))
theorem mem_intersection_of_mem_of_men : ∀ {l₁ l₂} {a : A}, a ∈ l₁ → a ∈ l₂ → a ∈ intersection l₁ l₂
theorem mem_intersection_of_mem_of_mem : ∀ {l₁ l₂} {a : A}, a ∈ l₁ → a ∈ l₂ → a ∈ intersection l₁ l₂
| [] l₂ a i₁ i₂ := absurd i₁ !not_mem_nil
| (b::l₁) l₂ a i₁ i₂ := by_cases
(λ binl₂ : b ∈ l₂,
@ -595,12 +595,12 @@ theorem mem_intersection_of_mem_of_men : ∀ {l₁ l₂} {a : A}, a ∈ l₁ →
(λ ainl₁ : a ∈ l₁,
by rewrite [intersection_cons_of_mem _ binl₂];
apply mem_cons_of_mem;
exact (mem_intersection_of_mem_of_men ainl₁ i₂)))
exact (mem_intersection_of_mem_of_mem ainl₁ i₂)))
(λ nbinl₂ : b ∉ l₂,
or.elim (eq_or_mem_of_mem_cons i₁)
(λ aeqb : a = b, absurd (aeqb ▸ i₂) nbinl₂)
(λ ainl₁ : a ∈ l₁,
by rewrite [intersection_cons_of_not_mem _ nbinl₂]; exact (mem_intersection_of_mem_of_men ainl₁ i₂)))
by rewrite [intersection_cons_of_not_mem _ nbinl₂]; exact (mem_intersection_of_mem_of_mem ainl₁ i₂)))
theorem nodup_intersection_of_nodup : ∀ {l₁ : list A} (l₂), nodup l₁ → nodup (intersection l₁ l₂)
| [] l₂ d := nodup_nil