fix(library/data/category): mark definitions as abbreviations
This commit is contained in:
parent
010ecebfea
commit
a305012ce5
1 changed files with 10 additions and 14 deletions
|
@ -24,10 +24,10 @@ namespace category
|
|||
section
|
||||
parameters {ob : Type} {Cat : category ob} {A B C D : ob}
|
||||
|
||||
|
||||
definition mor : ob → ob → Type := rec (λ mor compose id assoc idr idl, mor) Cat
|
||||
definition compose : Π {A B C : ob}, mor B C → mor A B → mor A C :=
|
||||
abbreviation mor : ob → ob → Type := rec (λ mor compose id assoc idr idl, mor) Cat
|
||||
abbreviation compose : Π {A B C : ob}, mor B C → mor A B → mor A C :=
|
||||
rec (λ mor compose id assoc idr idl, compose) Cat
|
||||
|
||||
definition id : Π {A : ob}, mor A A :=
|
||||
rec (λ mor compose id assoc idr idl, id) Cat
|
||||
abbreviation ID (A : ob) : mor A A := @id A
|
||||
|
@ -190,23 +190,19 @@ namespace category
|
|||
|
||||
section
|
||||
parameter {ob : Type}
|
||||
definition opposite [instance] (C : category ob) : category ob :=
|
||||
abbreviation opposite [instance] (C : category ob) : category ob :=
|
||||
category.mk (λa b, mor b a) (λ a b c f g, g ∘ f) (λ a, id) (λ a b c d f g h, symm assoc)
|
||||
(λ a b f, id_left) (λ a b f, id_right)
|
||||
precedence `∘op` : 60
|
||||
infixr `∘op` := @compose _ (opposite _) _ _ _
|
||||
|
||||
-- parameters {C : category ob} {a b c : ob} {f : @mor ob C a b} {g : @mor ob C b c}
|
||||
-- check g ∘ f
|
||||
-- check f ∘op g
|
||||
-- check f ∘op g = g ∘ f
|
||||
parameters {C : category ob} {a b c : ob} {f : @mor ob C a b} {g : @mor ob C b c}
|
||||
|
||||
-- theorem compose_op : f ∘op g = g ∘ f :=
|
||||
-- rfl
|
||||
-- theorem compose_op {C : category ob} {a b c : ob} {f : @mor ob C a b} {g : @mor ob C b c} : f ∘op g = g ∘ f :=
|
||||
-- rfl
|
||||
-- theorem op_op {C : category ob} : opposite (opposite C) = C :=
|
||||
-- rec (λ mor comp id assoc idl idr, sorry) C
|
||||
theorem compose_op : f ∘op g = g ∘ f :=
|
||||
rfl
|
||||
|
||||
theorem op_op {C : category ob} : opposite (opposite C) = C :=
|
||||
rec (λ mor comp id assoc idl idr, sorry) C
|
||||
end
|
||||
|
||||
section
|
||||
|
|
Loading…
Reference in a new issue