fix(library/data/category): mark definitions as abbreviations

This commit is contained in:
Leonardo de Moura 2014-09-12 09:28:33 -07:00
parent 010ecebfea
commit a305012ce5

View file

@ -24,10 +24,10 @@ namespace category
section section
parameters {ob : Type} {Cat : category ob} {A B C D : ob} parameters {ob : Type} {Cat : category ob} {A B C D : ob}
abbreviation mor : ob → ob → Type := rec (λ mor compose id assoc idr idl, mor) Cat
definition mor : ob → ob → Type := rec (λ mor compose id assoc idr idl, mor) Cat abbreviation compose : Π {A B C : ob}, mor B C → mor A B → mor A C :=
definition compose : Π {A B C : ob}, mor B C → mor A B → mor A C :=
rec (λ mor compose id assoc idr idl, compose) Cat rec (λ mor compose id assoc idr idl, compose) Cat
definition id : Π {A : ob}, mor A A := definition id : Π {A : ob}, mor A A :=
rec (λ mor compose id assoc idr idl, id) Cat rec (λ mor compose id assoc idr idl, id) Cat
abbreviation ID (A : ob) : mor A A := @id A abbreviation ID (A : ob) : mor A A := @id A
@ -190,23 +190,19 @@ namespace category
section section
parameter {ob : Type} parameter {ob : Type}
definition opposite [instance] (C : category ob) : category ob := abbreviation opposite [instance] (C : category ob) : category ob :=
category.mk (λa b, mor b a) (λ a b c f g, g ∘ f) (λ a, id) (λ a b c d f g h, symm assoc) category.mk (λa b, mor b a) (λ a b c f g, g ∘ f) (λ a, id) (λ a b c d f g h, symm assoc)
(λ a b f, id_left) (λ a b f, id_right) (λ a b f, id_left) (λ a b f, id_right)
precedence `∘op` : 60 precedence `∘op` : 60
infixr `∘op` := @compose _ (opposite _) _ _ _ infixr `∘op` := @compose _ (opposite _) _ _ _
-- parameters {C : category ob} {a b c : ob} {f : @mor ob C a b} {g : @mor ob C b c} parameters {C : category ob} {a b c : ob} {f : @mor ob C a b} {g : @mor ob C b c}
-- check g ∘ f
-- check f ∘op g
-- check f ∘op g = g ∘ f
-- theorem compose_op : f ∘op g = g ∘ f := theorem compose_op : f ∘op g = g ∘ f :=
-- rfl rfl
-- theorem compose_op {C : category ob} {a b c : ob} {f : @mor ob C a b} {g : @mor ob C b c} : f ∘op g = g ∘ f :=
-- rfl theorem op_op {C : category ob} : opposite (opposite C) = C :=
-- theorem op_op {C : category ob} : opposite (opposite C) = C := rec (λ mor comp id assoc idl idr, sorry) C
-- rec (λ mor comp id assoc idl idr, sorry) C
end end
section section