Fix unit tests for Windows

Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
This commit is contained in:
Leonardo de Moura 2013-09-03 10:44:51 -07:00
parent 2d97bc3861
commit a341643335
59 changed files with 73 additions and 49 deletions

View file

@ -74,6 +74,8 @@ static void tst5() {
frontend f;
std::shared_ptr<string_output_channel> out(new string_output_channel());
f.set_regular_channel(out);
f.set_option(name{"pp", "unicode"}, true);
f.set_option(name{"lean", "pp", "notation"}, true);
regular(f) << And(Const("a"), Const("b"));
lean_assert(out->str() == "a ∧ b");
f.set_option(name{"lean", "pp", "notation"}, false);
@ -95,8 +97,9 @@ static void tst6() {
expr t = mk_deep(10);
f.set_option(name{"lean", "pp", "max_depth"}, 5);
f.set_option(name{"pp", "colors"}, false);
f.set_option(name{"pp", "unicode"}, false);
regular(f) << t;
lean_assert(out->str() == "f (f (f (f (f ()))))");
lean_assert(out->str() == "f (f (f (f (f (...)))))");
}
int main() {

View file

@ -1,4 +1,3 @@
Set pp::colors false
Check 10 + 20
Check 10
Check 10 - 20

View file

@ -1,4 +1,5 @@
Set: pp::colors
Set: pp::unicode
Nat
Nat
Int

View file

@ -1,3 +1,5 @@
Set: pp::colors
Set: pp::unicode
1 / 2
2/3
3 div 2

View file

@ -1,4 +1,3 @@
Set pp::colors false
Eval 8 mod 3
Eval 8 div 4
Eval 7 div 3

View file

@ -1,4 +1,5 @@
Set: pp::colors
Set: pp::unicode
2
2
2

View file

@ -1,3 +1,5 @@
Set: pp::colors
Set: pp::unicode
Assumed: x
sin x
sin (x + -1 * (π / 2))

View file

@ -1,3 +1,5 @@
Set: pp::colors
Set: pp::unicode
Assumed: x
(1 + -1 * (exp (-2 * x))) / (2 * (exp (-1 * x)))
(1 + (exp (-2 * x))) / (2 * (exp (-1 * x)))

View file

@ -1,4 +1,3 @@
Set pp::colors false
Variable T : Type
Variable R : Type
Variable f : T -> R

View file

@ -1,4 +1,5 @@
Set: pp::colors
Set: pp::unicode
Assumed: T
Assumed: R
Assumed: f
@ -6,12 +7,12 @@
Variable f : T → R
Coercion f
Assumed: g
Error (line: 9, pos: 0) invalid coercion declaration, frontend already has a coercion for the given types
Error (line: 8, pos: 0) invalid coercion declaration, frontend already has a coercion for the given types
Assumed: h
Error (line: 11, pos: 0) invalid coercion declaration, a coercion must have an arrow type (i.e., a non-dependent functional type)
Error (line: 10, pos: 0) invalid coercion declaration, a coercion must have an arrow type (i.e., a non-dependent functional type)
Defined: T2
Defined: R2
Assumed: f2
Error (line: 15, pos: 0) invalid coercion declaration, frontend already has a coercion for the given types
Error (line: 14, pos: 0) invalid coercion declaration, frontend already has a coercion for the given types
Assumed: id
Error (line: 17, pos: 0) invalid coercion declaration, 'from' and 'to' types are the same
Error (line: 16, pos: 0) invalid coercion declaration, 'from' and 'to' types are the same

View file

@ -1,4 +1,3 @@
Set pp::colors false
Variable T : Type
Variable R : Type
Variable t2r : T -> R

View file

@ -1,4 +1,5 @@
Set: pp::colors
Set: pp::unicode
Assumed: T
Assumed: R
Assumed: t2r

3
tests/lean/config.lean Normal file
View file

@ -0,0 +1,3 @@
(* Set default configuration for tests *)
Set pp::colors false
Set pp::unicode true

View file

@ -0,0 +1,4 @@
Set: pp::colors
Set: pp::unicode
Set: pp::colors
Set: pp::unicode

File diff suppressed because one or more lines are too long

View file

@ -1 +1,3 @@
Set: pp::colors
Set: pp::unicode
test

View file

@ -1,6 +1,5 @@
(* comment *)
(* (* nested comment *) *)
Set pp::colors false
Show true
Set lean::pp::notation false
Show true && false

View file

@ -1,15 +1,16 @@
Set: pp::colors
Set: pp::unicode
Set: lean::pp::notation
and
Set: pp::unicode
and true false
Assumed: a
Error (line: 10, pos: 0) invalid object declaration, environment already has an object named 'a'
Error (line: 9, pos: 0) invalid object declaration, environment already has an object named 'a'
Assumed: b
and a b
Assumed: A
Error (line: 14, pos: 11) type mismatch at application
Error (line: 13, pos: 11) type mismatch at application
and a A
Function type:
Bool -> Bool -> Bool
@ -17,8 +18,8 @@ Arguments types:
Bool
Type
Variable A : Type
(pp::unicode := false, lean::pp::notation := false, pp::colors := false)
Error (line: 17, pos: 4) unknown option 'lean::p::notation', type 'Help Options.' for list of available options
Error (line: 18, pos: 23) invalid option value, given option is not an integer
(lean::pp::notation := false, pp::unicode := false, pp::colors := false)
Error (line: 16, pos: 4) unknown option 'lean::p::notation', type 'Help Options.' for list of available options
Error (line: 17, pos: 23) invalid option value, given option is not an integer
Set: lean::pp::notation
a /\ b

View file

@ -1,4 +1,3 @@
Set pp::colors false
Variable myeq : Pi (A : Type), A -> A -> Bool
Show myeq _ true false
Variable T : Type

View file

@ -1,9 +1,10 @@
Set: pp::colors
Set: pp::unicode
Assumed: myeq
myeq Bool
Assumed: T
Assumed: a
Error (line: 6, pos: 6) type mismatch at application
Error (line: 5, pos: 6) type mismatch at application
myeq Bool a
Function type:
Π (A : Type) (_ _ : A), Bool
@ -13,7 +14,7 @@ Arguments types:
T
Assumed: myeq2
Set: lean::pp::implicit
Error (line: 10, pos: 15) type mismatch at application
Error (line: 9, pos: 15) type mismatch at application
myeq2::explicit Bool a
Function type:
Π (A : Type) (a b : A), Bool

View file

@ -1,3 +1,5 @@
Set: pp::colors
Set: pp::unicode
Assumed: N
Assumed: f
Assumed: g

View file

@ -1,4 +1,3 @@
Set pp::colors false
Show 1 + true
Variable R : Type
Variable T : Type

View file

@ -1,5 +1,6 @@
Set: pp::colors
Error (line: 2, pos: 9) application type mismatch, none of the overloads can be used
Set: pp::unicode
Error (line: 1, pos: 10) application type mismatch, none of the overloads can be used
Candidates:
Real::add : Real → Real → Real
Int::add : Int → Int → Int
@ -22,7 +23,7 @@ f a b
f (r2t b) (t2r a)
Assumed: g
f a b
Error (line: 20, pos: 10) ambiguous overloads
Error (line: 19, pos: 10) ambiguous overloads
Candidates:
g : R → T → R
f : T → R → T

View file

@ -13,7 +13,7 @@ fi
NUM_ERRORS=0
for f in `ls *.lean`; do
echo "-- testing $f"
$LEAN $f > $f.produced.out
$LEAN config.lean $f > $f.produced.out
if test -f $f.expected.out; then
if diff $f.produced.out $f.expected.out; then
echo "-- checked"

View file

@ -1,4 +1,3 @@
Set pp::colors false
(* Define a "fake" type to simulate the natural numbers. This is just a test. *)
Variable N : Type
Variable lt : N -> N -> Bool

View file

@ -1,4 +1,5 @@
Set: pp::colors
Set: pp::unicode
Assumed: N
Assumed: lt
Assumed: zero

View file

@ -1,4 +1,3 @@
Set pp::colors false
Variable a : Bool
Variable b : Bool
(* Conjunctions *)

View file

@ -1,4 +1,5 @@
Set: pp::colors
Set: pp::unicode
Assumed: a
Assumed: b
a ∧ b

View file

@ -1,4 +1,3 @@
Set pp::colors false
Definition xor (x y : Bool) : Bool := (not x) = y
Infixr 50 ⊕ : xor
Show xor true false

View file

@ -1,4 +1,5 @@
Set: pp::colors
Set: pp::unicode
Defined: xor
⊕ ⊥

View file

@ -1,4 +1,3 @@
Set pp::colors false
Show (fun x : Bool, (fun y : Bool, x /\ y))
Show let x := true,
y := true

View file

@ -1,4 +1,5 @@
Set: pp::colors
Set: pp::unicode
λ x y : Bool, x ∧ y
let x := ,
y := ,

View file

@ -1,4 +1,3 @@
Set pp::colors false
Show fun x : Bool, (fun x : Bool, x).
Show let x := true,
y := true

View file

@ -1,3 +1,4 @@
Set: pp::colors
Set: pp::unicode
λ x x : Bool, x
let x := , y := , z := x ∧ y, f := λ x y : Bool, x ∧ y ⇔ y ∧ x ⇔ x y y in (f x y) z

View file

@ -1,4 +1,3 @@
Set pp::colors false
Show Int -> Int -> Int
Variable f : Int -> Int -> Int
Eval f 0

View file

@ -1,4 +1,5 @@
Set: pp::colors
Set: pp::unicode
Int → Int → Int
Assumed: f
f 0

View file

@ -1,4 +1,3 @@
Set pp::colors false
Variable x : Type max U+1+2 M+1 M+2 3
Check x
Variable f : Type U+10 -> Type

View file

@ -1,4 +1,5 @@
Set: pp::colors
Set: pp::unicode
Assumed: x
Type U+3 ⊔ M+2 ⊔ 3
Assumed: f

View file

@ -1,4 +1,3 @@
Set pp::colors false
Variable f : Type -> Bool
Show forall a b : Type, (f a) = (f b)
Variable g : Bool -> Bool -> Bool

View file

@ -1,4 +1,5 @@
Set: pp::colors
Set: pp::unicode
Assumed: f
∀ a b : Type, (f a) = (f b)
Assumed: g

View file

@ -1,4 +1,3 @@
Set pp::colors false
Variable f : Type -> Bool
Variable g : Type -> Type -> Bool
Show forall (a b : Type), exists (c : Type), (g a b) = (f c)

View file

@ -1,4 +1,5 @@
Set: pp::colors
Set: pp::unicode
Assumed: f
Assumed: g
∀ a b : Type, ∃ c : Type, (g a b) = (f c)

View file

@ -1,12 +1,14 @@
⟨⟩
Set: pp::colors
Set: pp::unicode
⟨pp::unicode ↦ true, pp::colors ↦ false⟩
Assumed: a
Assumed: b
a ∧ b
Set: lean::pp::notation
⟨lean::pp::notation ↦ false⟩
⟨lean::pp::notation ↦ false, pp::unicode ↦ true, pp::colors ↦ false⟩
and a b
Variable a : Bool
Variable b : Bool
Variable a : Bool
Variable b : Bool
Set: lean::pp::notation
⟨lean::pp::notation ↦ true⟩
⟨lean::pp::notation ↦ true, pp::unicode ↦ true, pp::colors ↦ false
a ∧ b

View file

@ -1,4 +1,3 @@
Set pp::colors false
Set lean::parser::verbose false.
Notation 10 if _ then _ : implies.
Show Environment 1.

View file

@ -1,4 +1,5 @@
Set: pp::colors
Set: pp::unicode
Notation 10 if _ then _ : implies
if then ⊥
if then (if a then ⊥)

View file

@ -7,7 +7,6 @@ Show f n1 n2
Show f (fun x : N -> N, x) (fun y : _, y)
Variable EqNice {A : Type} (lhs rhs : A) : Bool
Infix 50 === : EqNice
Set pp::colors false
Show n1 === n2
Check f n1 n2
Check Congr::explicit

View file

@ -1,12 +1,13 @@
Set: pp::colors
Set: pp::unicode
Assumed: f
Assumed: N
Assumed: n1
Assumed: n2
Set: lean::pp::implicit
f::explicit N n1 n2
f::explicit ((N → N) → N → N) (λ x : N → N, x) (λ y : N → N, y)
f::explicit ((N → N) → N → N) (λ x : N → N, x) (λ y : N → N, y)
Assumed: EqNice
Set: pp::colors
EqNice::explicit N n1 n2
N
Π (A : Type U) (B : A → Type U) (f g : Π x : A, B x) (a b : A) (H1 : f = g) (H2 : a = b), (f a) = (g b)

View file

@ -1,4 +1,3 @@
Set pp::colors false
Variable N : Type
Variable a : N
Variable b : N

View file

@ -1,4 +1,5 @@
Set: pp::colors
Set: pp::unicode
Assumed: N
Assumed: a
Assumed: b

View file

@ -1,4 +1,3 @@
Set pp::colors false
Variable N : Type
Variable h : N -> N -> N

View file

@ -1,4 +1,5 @@
Set: pp::colors
Set: pp::unicode
Assumed: N
Assumed: h
Proved: CongrH

View file

@ -1,4 +1,3 @@
Set pp::colors false
Variable f : Pi (A : Type), A -> Bool
Show fun (A B : Type) (a : _), f B a
(* The following one should produce an error *)

View file

@ -1,7 +1,8 @@
Set: pp::colors
Set: pp::unicode
Assumed: f
λ (A B : Type) (a : B), f B a
Error (line: 5, pos: 40) application type mismatch during term elaboration at term
Error (line: 4, pos: 40) application type mismatch during term elaboration at term
f B a
Elaborator state
#0 ≈ lift:0:2 ?M0

View file

@ -1,4 +1,3 @@
Set pp::colors false
Check fun (A : Type) (a : A),
let b := a
in b

View file

@ -1,4 +1,5 @@
Set: pp::colors
Set: pp::unicode
Π (A : Type) (a : A), A
Assumed: g
Defined: f

View file

@ -1,4 +1,3 @@
Set pp::colors false
Variable f : Pi A : Type, A -> A -> A
Variable N : Type
Variable g : N -> N -> Bool

View file

@ -1,9 +1,10 @@
Set: pp::colors
Set: pp::unicode
Assumed: f
Assumed: N
Assumed: g
Assumed: a
Error (line: 6, pos: 6) type mismatch at application
Error (line: 5, pos: 6) type mismatch at application
g (f _ a a)
Function type:
N → N → Bool

View file

@ -1,4 +1,3 @@
Set pp::colors false
Show true /\ false
Set pp::unicode false
Show true /\ false

View file

@ -1,4 +1,5 @@
Set: pp::colors
Set: pp::unicode
∧ ⊥
Set: pp::unicode
true /\ false