refactor(library/logic): use new K-like reduction to simplify some proofs
This commit is contained in:
parent
235b8975d2
commit
a41850227a
2 changed files with 10 additions and 11 deletions
|
@ -16,8 +16,7 @@ theorem cast_proof_irrel {A B : Type} (H₁ H₂ : A = B) (a : A) : cast H₁ a
|
|||
rfl
|
||||
|
||||
theorem cast_eq {A : Type} (H : A = A) (a : A) : cast H a = a :=
|
||||
calc cast H a = cast (eq.refl A) a : rfl
|
||||
... = a : rfl
|
||||
rfl
|
||||
|
||||
inductive heq.{l} {A : Type.{l}} (a : A) : Π {B : Type.{l}}, B → Prop :=
|
||||
refl : heq a a
|
||||
|
|
|
@ -26,7 +26,7 @@ section
|
|||
variables {A : Type}
|
||||
variables {a b c : A}
|
||||
theorem id_refl (H₁ : a = a) : H₁ = (eq.refl a) :=
|
||||
!proof_irrel
|
||||
rfl
|
||||
|
||||
theorem irrel (H₁ H₂ : a = b) : H₁ = H₂ :=
|
||||
!proof_irrel
|
||||
|
@ -58,7 +58,7 @@ namespace eq
|
|||
eq.rec (λH₁ : a = a, show B a H₁, from H₂) H₁ H₁
|
||||
|
||||
theorem rec_on_id {A : Type} {a : A} {B : Πa' : A, a = a' → Type} (H : a = a) (b : B a H) : rec_on H b = b :=
|
||||
refl (rec_on rfl b)
|
||||
rfl
|
||||
|
||||
theorem rec_on_constant {A : Type} {a a' : A} {B : Type} (H : a = a') (b : B) : rec_on H b = b :=
|
||||
rec_on H (λ(H' : a = a), rec_on_id H' b) H
|
||||
|
@ -72,7 +72,7 @@ namespace eq
|
|||
rec_on H (λ(H : a = a) (H' : f a = f a), rec_on_id H b ⬝ rec_on_id H' b⁻¹) H H'
|
||||
|
||||
theorem rec_id {A : Type} {a : A} {B : A → Type} (H : a = a) (b : B a) : rec b H = b :=
|
||||
id_refl H⁻¹ ▸ refl (eq.rec b (refl a))
|
||||
rfl
|
||||
|
||||
theorem rec_on_compose {A : Type} {a b c : A} {P : A → Type} (H₁ : a = b) (H₂ : b = c)
|
||||
(u : P a) :
|
||||
|
@ -127,12 +127,12 @@ end
|
|||
|
||||
section
|
||||
variables {A : Type} {B : A → Type} {C : Πa, B a → Type} {D : Πa b, C a b → Type} {R : Type}
|
||||
variables {a₁ a₂ : A}
|
||||
{b₁ : B a₁} {b₂ : B a₂}
|
||||
{c₁ : C a₁ b₁} {c₂ : C a₂ b₂}
|
||||
variables {a₁ a₂ : A}
|
||||
{b₁ : B a₁} {b₂ : B a₂}
|
||||
{c₁ : C a₁ b₁} {c₂ : C a₂ b₂}
|
||||
{d₁ : D a₁ b₁ c₁} {d₂ : D a₂ b₂ c₂}
|
||||
|
||||
theorem congr_arg2_dep (f : Πa, B a → R) (H₁ : a₁ = a₂) (H₂ : eq.rec_on H₁ b₁ = b₂)
|
||||
theorem congr_arg2_dep (f : Πa, B a → R) (H₁ : a₁ = a₂) (H₂ : eq.rec_on H₁ b₁ = b₂)
|
||||
: f a₁ b₁ = f a₂ b₂ :=
|
||||
eq.rec_on H₁
|
||||
(λ (b₂ : B a₁) (H₁ : a₁ = a₁) (H₂ : eq.rec_on H₁ b₁ = b₂),
|
||||
|
@ -152,7 +152,7 @@ section
|
|||
|
||||
-- for the moment the following theorem is commented out, because it takes long to prove
|
||||
-- theorem congr_arg4_dep (f : Πa b c, D a b c → R) (H₁ : a₁ = a₂) (H₂ : eq.rec_on H₁ b₁ = b₂)
|
||||
-- (H₃ : eq.rec_on (congr_arg2_dep C H₁ H₂) c₁ = c₂)
|
||||
-- (H₃ : eq.rec_on (congr_arg2_dep C H₁ H₂) c₁ = c₂)
|
||||
-- (H₄ : eq.rec_on (congr_arg3_dep D H₁ H₂ H₃) d₁ = d₂) : f a₁ b₁ c₁ d₁ = f a₂ b₂ c₂ d₂ :=
|
||||
-- eq.rec_on H₁
|
||||
-- (λ b₂ H₂ c₂ H₃ d₂ (H₄ : _),
|
||||
|
@ -261,5 +261,5 @@ definition elim {A : Type} (H : subsingleton A) : ∀(a b : A), a = b :=
|
|||
rec (fun p, p) H
|
||||
end subsingleton
|
||||
|
||||
protected definition prop.subsingleton [instance] (P : Prop) : subsingleton P :=
|
||||
protected definition prop.subsingleton [instance] (P : Prop) : subsingleton P :=
|
||||
subsingleton.intro (λa b, !proof_irrel)
|
||||
|
|
Loading…
Reference in a new issue