refactor(kernel): remove heterogeneous equality
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
This commit is contained in:
parent
1da4294793
commit
a43020b31b
99 changed files with 342 additions and 1058 deletions
|
@ -57,49 +57,3 @@ definition inc (x : Nat) : Nat := x + 1
|
|||
eval inc (inc (inc 2))
|
||||
eval max (inc 2) 2 = 3
|
||||
```
|
||||
|
||||
## Heterogeneous equality
|
||||
|
||||
For technical reasons, in Lean, we have heterogenous and homogeneous equality. In a nutshell, heterogenous is mainly used internally, and
|
||||
homogeneous are used externally when writing programs and specifications in Lean.
|
||||
Heterogenous equality allows us to compare elements of any type, and homogenous equality is just a definition on top of the heterogenous equality that expects arguments of the same type.
|
||||
The expression `t == s` is a heterogenous equality that is true iff `t` and `s` have the same interpretation.
|
||||
In the following example, we evaluate the expressions `1 == 2` and `2 == 2`. The first evaluates to `false` and the second to `true`.
|
||||
|
||||
```lean
|
||||
eval 1 == 2
|
||||
eval 2 == 2
|
||||
```
|
||||
|
||||
Since we can compare elements of different types, the following
|
||||
expression is type correct, but Lean normalizer/evaluator will *not*
|
||||
reduce it.
|
||||
|
||||
```lean
|
||||
eval 2 == true
|
||||
```
|
||||
|
||||
We strongly discourage users from directly using heterogeneous equality. The main problem is that it is very easy to
|
||||
write nonsensical expressions like the one above. The expression `t = s` is a homogeneous equality.
|
||||
It expects `t` and `s` to have the same type. Thus, the expression `2 = true` is type incorrect in Lean.
|
||||
The symbol `=` is just notation. Internally, homogeneous equality is defined as:
|
||||
|
||||
```
|
||||
definition eq {A : (Type U)} (x y : A) : Bool := x == y
|
||||
infix 50 = : eq
|
||||
```
|
||||
|
||||
The curly braces indicate that the first argument of `eq` is implicit. The symbol `=` is just a syntax sugar for `eq`.
|
||||
In the following example, we use the `set_option` command to force Lean to display implicit arguments and
|
||||
disable notation when pretty printing expressions.
|
||||
|
||||
```lean
|
||||
set_option pp::implicit true
|
||||
set_option pp::notation false
|
||||
check 1 = 2
|
||||
|
||||
-- restore default configuration
|
||||
set_option pp::implicit false
|
||||
set_option pp::notation true
|
||||
check 1 = 2
|
||||
```
|
||||
|
|
|
@ -93,7 +93,7 @@ add_theory("if_then_else.lean" "${CMAKE_CURRENT_BINARY_DIR}/Nat.olean")
|
|||
add_theory("Int.lean" "${CMAKE_CURRENT_BINARY_DIR}/if_then_else.olean")
|
||||
add_theory("Real.lean" "${CMAKE_CURRENT_BINARY_DIR}/Int.olean")
|
||||
add_theory("specialfn.lean" "${CMAKE_CURRENT_BINARY_DIR}/Real.olean")
|
||||
add_theory("cast.lean" "${CMAKE_CURRENT_BINARY_DIR}/Nat.olean")
|
||||
## add_theory("cast.lean" "${CMAKE_CURRENT_BINARY_DIR}/Nat.olean")
|
||||
|
||||
update_interface("kernel.olean" "kernel" "-n")
|
||||
update_interface("Nat.olean" "library/arith" "-n")
|
||||
|
|
|
@ -1,34 +1,39 @@
|
|||
import macros
|
||||
|
||||
universe U ≥ 1
|
||||
universe U ≥ 1
|
||||
universe U' >= U + 1
|
||||
|
||||
variable Bool : Type
|
||||
-- The following builtin declarations can be removed as soon as Lean supports inductive datatypes and match expressions
|
||||
builtin true : Bool
|
||||
builtin false : Bool
|
||||
|
||||
definition TypeU := (Type U)
|
||||
definition TypeU := (Type U)
|
||||
definition TypeU' := (Type U')
|
||||
|
||||
builtin eq {A : (Type U')} (a b : A) : Bool
|
||||
infix 50 = : eq
|
||||
|
||||
definition not (a : Bool) := a → false
|
||||
|
||||
notation 40 ¬ _ : not
|
||||
|
||||
definition or (a b : Bool) := ¬ a → b
|
||||
|
||||
infixr 30 || : or
|
||||
infixr 30 \/ : or
|
||||
infixr 30 ∨ : or
|
||||
|
||||
definition and (a b : Bool) := ¬ (a → ¬ b)
|
||||
|
||||
infixr 35 && : and
|
||||
infixr 35 /\ : and
|
||||
infixr 35 ∧ : and
|
||||
|
||||
definition neq {A : TypeU} (a b : A) := ¬ (a = b)
|
||||
infix 50 ≠ : neq
|
||||
|
||||
definition implies (a b : Bool) := a → b
|
||||
|
||||
definition iff (a b : Bool) := a == b
|
||||
|
||||
definition iff (a b : Bool) := a = b
|
||||
infixr 25 <-> : iff
|
||||
infixr 25 ↔ : iff
|
||||
|
||||
|
@ -42,38 +47,30 @@ infixr 25 ↔ : iff
|
|||
-- want to treat exists as a constant.
|
||||
definition Exists (A : TypeU) (P : A → Bool) := ¬ (∀ x : A, ¬ (P x))
|
||||
|
||||
definition eq {A : TypeU} (a b : A) := a == b
|
||||
|
||||
infix 50 = : eq
|
||||
|
||||
definition neq {A : TypeU} (a b : A) := ¬ (a = b)
|
||||
|
||||
infix 50 ≠ : neq
|
||||
|
||||
theorem em (a : Bool) : a ∨ ¬ a
|
||||
:= assume Hna : ¬ a, Hna
|
||||
|
||||
axiom case (P : Bool → Bool) (H1 : P true) (H2 : P false) (a : Bool) : P a
|
||||
|
||||
axiom refl {A : TypeU} (a : A) : a = a
|
||||
axiom refl {A : TypeU'} (a : A) : a = a
|
||||
|
||||
axiom subst {A : TypeU} {a b : A} {P : A → Bool} (H1 : P a) (H2 : a = b) : P b
|
||||
axiom subst {A : TypeU'} {a b : A} {P : A → Bool} (H1 : P a) (H2 : a = b) : P b
|
||||
|
||||
-- Function extensionality
|
||||
axiom funext {A : TypeU} {B : A → TypeU} {f g : ∀ x : A, B x} (H : ∀ x : A, f x == g x) : f == g
|
||||
axiom funext {A : TypeU'} {B : A → TypeU'} {f g : ∀ x : A, B x} (H : ∀ x : A, f x = g x) : f = g
|
||||
|
||||
-- Forall extensionality
|
||||
axiom allext {A : TypeU} {B C : A → TypeU} (H : ∀ x : A, B x == C x) : (∀ x : A, B x) == (∀ x : A, C x)
|
||||
axiom allext {A : TypeU} {B C : A → Bool} (H : ∀ x : A, B x = C x) : (∀ x : A, B x) = (∀ x : A, C x)
|
||||
|
||||
-- Alias for subst where we can provide P explicitly, but keep A,a,b implicit
|
||||
theorem substp {A : TypeU} {a b : A} (P : A → Bool) (H1 : P a) (H2 : a = b) : P b
|
||||
theorem substp {A : TypeU'} {a b : A} (P : A → Bool) (H1 : P a) (H2 : a = b) : P b
|
||||
:= subst H1 H2
|
||||
|
||||
-- We will mark not as opaque later
|
||||
theorem not_intro {a : Bool} (H : a → false) : ¬ a
|
||||
:= H
|
||||
|
||||
theorem eta {A : TypeU} {B : A → TypeU} (f : ∀ x : A, B x) : (λ x : A, f x) = f
|
||||
theorem eta {A : TypeU'} {B : A → TypeU} (f : ∀ x : A, B x) : (λ x : A, f x) = f
|
||||
:= funext (λ x : A, refl (f x))
|
||||
|
||||
theorem trivial : true
|
||||
|
@ -157,10 +154,10 @@ theorem or_elim {a b c : Bool} (H1 : a ∨ b) (H2 : a → c) (H3 : b → c) : c
|
|||
theorem refute {a : Bool} (H : ¬ a → false) : a
|
||||
:= or_elim (em a) (λ H1 : a, H1) (λ H1 : ¬ a, false_elim a (H H1))
|
||||
|
||||
theorem symm {A : TypeU} {a b : A} (H : a = b) : b = a
|
||||
theorem symm {A : TypeU'} {a b : A} (H : a = b) : b = a
|
||||
:= subst (refl a) H
|
||||
|
||||
theorem trans {A : TypeU} {a b c : A} (H1 : a = b) (H2 : b = c) : a = c
|
||||
theorem trans {A : TypeU'} {a b c : A} (H1 : a = b) (H2 : b = c) : a = c
|
||||
:= subst H1 H2
|
||||
|
||||
infixl 100 ⋈ : trans
|
||||
|
@ -174,39 +171,20 @@ theorem eq_ne_trans {A : TypeU} {a b c : A} (H1 : a = b) (H2 : b ≠ c) : a ≠
|
|||
theorem ne_eq_trans {A : TypeU} {a b c : A} (H1 : a ≠ b) (H2 : b = c) : a ≠ c
|
||||
:= subst H1 H2
|
||||
|
||||
theorem heq_congr {A : TypeU} {a b c d : A} (H1 : a == c) (H2 : b == d) : (a == b) = (c == d)
|
||||
:= calc (a == b) = (c == b) : { H1 }
|
||||
... = (c == d) : { H2 }
|
||||
|
||||
theorem heq_congrl {A : TypeU} {a : A} (b : A) {c : A} (H : a == c) : (a == b) = (c == b)
|
||||
:= heq_congr H (refl b)
|
||||
|
||||
theorem heq_congrr {A : TypeU} (a : A) {b d : A} (H : b == d) : (a == b) = (a == d)
|
||||
:= heq_congr (refl a) H
|
||||
|
||||
theorem eqt_elim {a : Bool} (H : a = true) : a
|
||||
:= (symm H) ◂ trivial
|
||||
|
||||
theorem eqf_elim {a : Bool} (H : a = false) : ¬ a
|
||||
:= not_intro (λ Ha : a, H ◂ Ha)
|
||||
|
||||
theorem congr1 {A : TypeU} {B : A → TypeU} {f g : ∀ x : A, B x} (a : A) (H : f = g) : f a = g a
|
||||
theorem congr1 {A : TypeU'} {B : A → TypeU'} {f g : ∀ x : A, B x} (a : A) (H : f = g) : f a = g a
|
||||
:= substp (fun h : (∀ x : A, B x), f a = h a) (refl (f a)) H
|
||||
|
||||
-- We must use heterogenous equality in this theorem because (f a) : (B a) and (f b) : (B b)
|
||||
theorem congr2 {A : TypeU} {B : A → TypeU} {a b : A} (f : ∀ x : A, B x) (H : a = b) : f a == f b
|
||||
:= substp (fun x : A, f a == f x) (refl (f a)) H
|
||||
|
||||
theorem congr {A : TypeU} {B : A → TypeU} {f g : ∀ x : A, B x} {a b : A} (H1 : f = g) (H2 : a = b) : f a == g b
|
||||
:= subst (congr2 f H2) (congr1 b H1)
|
||||
|
||||
-- Simpler version of congr2 theorem for arrows (i.e., non-dependent types)
|
||||
theorem scongr2 {A B : TypeU} {a b : A} (f : A → B) (H : a = b) : f a = f b
|
||||
theorem congr2 {A B : TypeU'} {a b : A} (f : A → B) (H : a = b) : f a = f b
|
||||
:= substp (fun x : A, f a = f x) (refl (f a)) H
|
||||
|
||||
-- Simpler version of congr theorem for arrows (i.e., non-dependent types)
|
||||
theorem scongr {A B : TypeU} {f g : A → B} {a b : A} (H1 : f = g) (H2 : a = b) : f a = g b
|
||||
:= subst (scongr2 f H2) (congr1 b H1)
|
||||
theorem congr {A B : TypeU'} {f g : A → B} {a b : A} (H1 : f = g) (H2 : a = b) : f a = g b
|
||||
:= subst (congr2 f H2) (congr1 b H1)
|
||||
|
||||
-- Recall that exists is defined as ¬ ∀ x : A, ¬ P x
|
||||
theorem exists_elim {A : TypeU} {P : A → Bool} {B : Bool} (H1 : Exists A P) (H2 : ∀ (a : A) (H : P a), B) : B
|
||||
|
@ -241,7 +219,7 @@ theorem eqf_intro {a : Bool} (H : ¬ a) : a = false
|
|||
theorem neq_elim {A : TypeU} {a b : A} (H : a ≠ b) : a = b ↔ false
|
||||
:= eqf_intro H
|
||||
|
||||
theorem or_comm (a b : Bool) : a ∨ b ↔ b ∨ a
|
||||
theorem or_comm (a b : Bool) : (a ∨ b) = (b ∨ a)
|
||||
:= boolext (assume H, or_elim H (λ H1, or_intror b H1) (λ H2, or_introl H2 a))
|
||||
(assume H, or_elim H (λ H1, or_intror a H1) (λ H2, or_introl H2 b))
|
||||
|
||||
|
@ -490,7 +468,7 @@ theorem and_congrl {a b c d : Bool} (H_ac : ∀ (H_d : d), a = c) (H_bd : ∀ (H
|
|||
theorem and_congr {a b c d : Bool} (H_ac : a = c) (H_bd : ∀ (H_c : c), b = d) : a ∧ b ↔ c ∧ d
|
||||
:= and_congrr (λ H, H_ac) H_bd
|
||||
|
||||
theorem forall_or_distributer {A : TypeU} (p : Bool) (φ : A → Bool) : (∀ x, p ∨ φ x) ↔ p ∨ ∀ x, φ x
|
||||
theorem forall_or_distributer {A : TypeU} (p : Bool) (φ : A → Bool) : (∀ x, p ∨ φ x) = (p ∨ ∀ x, φ x)
|
||||
:= boolext
|
||||
(assume H : (∀ x, p ∨ φ x),
|
||||
or_elim (em p)
|
||||
|
@ -503,10 +481,10 @@ theorem forall_or_distributer {A : TypeU} (p : Bool) (φ : A → Bool) : (∀ x,
|
|||
(λ H1 : p, or_introl H1 (φ x))
|
||||
(λ H2 : (∀ x, φ x), or_intror p (H2 x)))
|
||||
|
||||
theorem forall_or_distributel {A : TypeU} (p : Bool) (φ : A → Bool) : (∀ x, φ x ∨ p) ↔ (∀ x, φ x) ∨ p
|
||||
theorem forall_or_distributel {A : Type} (p : Bool) (φ : A → Bool) : (∀ x, φ x ∨ p) = ((∀ x, φ x) ∨ p)
|
||||
:= calc (∀ x, φ x ∨ p) = (∀ x, p ∨ φ x) : allext (λ x, or_comm (φ x) p)
|
||||
... = (p ∨ ∀ x, φ x) : forall_or_distributer p φ
|
||||
... = ((∀ x, φ x) ∨ p) : or_comm p (∀ x, φ x)
|
||||
... = (p ∨ ∀ x, φ x) : forall_or_distributer p φ
|
||||
... = ((∀ x, φ x) ∨ p) : or_comm p (∀ x, φ x)
|
||||
|
||||
theorem forall_and_distribute {A : TypeU} (φ ψ : A → Bool) : (∀ x, φ x ∧ ψ x) ↔ (∀ x, φ x) ∧ (∀ x, ψ x)
|
||||
:= boolext
|
||||
|
|
|
@ -1,4 +1,8 @@
|
|||
-- Output a C++ statement that creates the given name
|
||||
function sanitize(s)
|
||||
s, _ = string.gsub(s, "'", "_")
|
||||
return s
|
||||
end
|
||||
function name_to_cpp_expr(n)
|
||||
function rec(n)
|
||||
if not n:is_atomic() then
|
||||
|
@ -6,7 +10,8 @@ function name_to_cpp_expr(n)
|
|||
io.write(", ")
|
||||
end
|
||||
if n:is_string() then
|
||||
io.write("\"" .. n:get_string() .. "\"")
|
||||
local s = n:get_string()
|
||||
io.write("\"" .. sanitize(s) .. "\"")
|
||||
else
|
||||
error("numeral hierarchical names are not supported in the C++ interface: " .. tostring(n))
|
||||
end
|
||||
|
@ -31,7 +36,8 @@ function name_to_cpp_decl(n)
|
|||
io.write("_")
|
||||
end
|
||||
if n:is_string() then
|
||||
io.write(n:get_string())
|
||||
local s = n:get_string()
|
||||
io.write(sanitize(s))
|
||||
else
|
||||
error("numeral hierarchical names are not supported in the C++ interface: " .. tostring(n))
|
||||
end
|
||||
|
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
|
@ -7,7 +7,6 @@ Author: Leonardo de Moura
|
|||
#pragma once
|
||||
#include <limits>
|
||||
namespace lean {
|
||||
constexpr unsigned g_eq_precedence = 50;
|
||||
constexpr unsigned g_arrow_precedence = 25;
|
||||
constexpr unsigned g_app_precedence = std::numeric_limits<unsigned>::max();
|
||||
}
|
||||
|
|
|
@ -44,10 +44,18 @@ void calc_proof_parser::add_trans_step(expr const & op1, expr const & op2, trans
|
|||
m_trans_ops.emplace_front(op1, op2, d);
|
||||
}
|
||||
|
||||
static expr get_value_op(expr const & op) {
|
||||
if (is_value(op))
|
||||
return mk_constant(to_value(op).get_name());
|
||||
else
|
||||
return op;
|
||||
}
|
||||
|
||||
|
||||
calc_proof_parser::calc_proof_parser() {
|
||||
expr imp = mk_implies_fn();
|
||||
expr eq = mk_eq_fn();
|
||||
expr neq = mk_neq_fn();
|
||||
expr imp = get_value_op(mk_implies_fn());
|
||||
expr eq = get_value_op(mk_eq_fn());
|
||||
expr neq = get_value_op(mk_neq_fn());
|
||||
|
||||
add_supported_operator(op_data(imp, 2));
|
||||
add_supported_operator(op_data(eq, 3));
|
||||
|
|
|
@ -563,14 +563,6 @@ expr parser_imp::parse_led_id(expr const & left) {
|
|||
}
|
||||
}
|
||||
|
||||
/** \brief Parse <tt>expr '=' expr</tt>. */
|
||||
expr parser_imp::parse_heq(expr const & left) {
|
||||
auto p = pos();
|
||||
next();
|
||||
expr right = parse_expr(g_eq_precedence);
|
||||
return save(mk_heq(left, right), p);
|
||||
}
|
||||
|
||||
/** \brief Parse <tt>expr '->' expr</tt>. */
|
||||
expr parser_imp::parse_arrow(expr const & left) {
|
||||
auto p = pos();
|
||||
|
@ -949,7 +941,6 @@ expr parser_imp::mk_app_left(expr const & left, expr const & arg) {
|
|||
expr parser_imp::parse_led(expr const & left) {
|
||||
switch (curr()) {
|
||||
case scanner::token::Id: return parse_led_id(left);
|
||||
case scanner::token::Eq: return parse_heq(left);
|
||||
case scanner::token::Arrow: return parse_arrow(left);
|
||||
case scanner::token::LeftParen: return mk_app_left(left, parse_lparen());
|
||||
case scanner::token::IntVal: return mk_app_left(left, parse_nat_int());
|
||||
|
@ -979,7 +970,6 @@ unsigned parser_imp::curr_lbp() {
|
|||
return g_app_precedence;
|
||||
}
|
||||
}
|
||||
case scanner::token::Eq : return g_eq_precedence;
|
||||
case scanner::token::Arrow : return g_arrow_precedence;
|
||||
case scanner::token::LeftParen: case scanner::token::IntVal: case scanner::token::DecimalVal:
|
||||
case scanner::token::StringVal: case scanner::token::Type: case scanner::token::Placeholder:
|
||||
|
|
|
@ -291,7 +291,6 @@ private:
|
|||
pos_info const & p);
|
||||
expr parse_expr_macro(name const & id, pos_info const & p);
|
||||
expr parse_led_id(expr const & left);
|
||||
expr parse_heq(expr const & left);
|
||||
expr parse_arrow(expr const & left);
|
||||
expr parse_lparen();
|
||||
void parse_names(buffer<std::pair<pos_info, name>> & result);
|
||||
|
|
|
@ -64,7 +64,6 @@ Author: Leonardo de Moura
|
|||
|
||||
namespace lean {
|
||||
static format g_Type_fmt = highlight_builtin(format("Type"));
|
||||
static format g_eq_fmt = format("==");
|
||||
static format g_lambda_n_fmt = highlight_keyword(format("\u03BB"));
|
||||
static format g_Pi_n_fmt = highlight_keyword(format("\u2200"));
|
||||
static format g_lambda_fmt = highlight_keyword(format("fun"));
|
||||
|
@ -234,7 +233,7 @@ class pp_fn {
|
|||
return is_atomic(arg(e, 1));
|
||||
else
|
||||
return false;
|
||||
case expr_kind::Lambda: case expr_kind::Pi: case expr_kind::HEq: case expr_kind::Let:
|
||||
case expr_kind::Lambda: case expr_kind::Pi: case expr_kind::Let:
|
||||
return false;
|
||||
}
|
||||
return false;
|
||||
|
@ -441,8 +440,6 @@ class pp_fn {
|
|||
operator_info op = get_operator(e);
|
||||
if (op) {
|
||||
return op.get_precedence();
|
||||
} else if (is_heq(e)) {
|
||||
return g_eq_precedence;
|
||||
} else if (is_arrow(e)) {
|
||||
return g_arrow_precedence;
|
||||
} else if (is_lambda(e) || is_pi(e) || is_let(e) || is_exists(e)) {
|
||||
|
@ -459,8 +456,6 @@ class pp_fn {
|
|||
operator_info op = get_operator(e);
|
||||
if (op) {
|
||||
return op.get_fixity() == fx;
|
||||
} else if (is_heq(e)) {
|
||||
return fixity::Infix == fx;
|
||||
} else if (is_arrow(e)) {
|
||||
return fixity::Infixr == fx;
|
||||
} else {
|
||||
|
@ -1021,28 +1016,6 @@ class pp_fn {
|
|||
return mk_pair(group(r_format), r_weight);
|
||||
}
|
||||
|
||||
/** \brief Pretty print the child of an equality. */
|
||||
result pp_heq_child(expr const & e, unsigned depth) {
|
||||
if (is_atomic(e)) {
|
||||
return pp(e, depth + 1);
|
||||
} else {
|
||||
if (g_eq_precedence < get_operator_precedence(e))
|
||||
return pp(e, depth + 1);
|
||||
else
|
||||
return pp_child_with_paren(e, depth);
|
||||
}
|
||||
}
|
||||
|
||||
/** \brief Pretty print an equality */
|
||||
result pp_heq(expr const & e, unsigned depth) {
|
||||
result p_arg1, p_arg2;
|
||||
format r_format;
|
||||
p_arg1 = pp_heq_child(heq_lhs(e), depth);
|
||||
p_arg2 = pp_heq_child(heq_rhs(e), depth);
|
||||
r_format = group(format{p_arg1.first, space(), g_eq_fmt, line(), p_arg2.first});
|
||||
return mk_result(r_format, p_arg1.second + p_arg2.second + 1);
|
||||
}
|
||||
|
||||
result pp_choice(expr const & e, unsigned depth) {
|
||||
lean_assert(is_choice(e));
|
||||
unsigned num = get_num_choices(e);
|
||||
|
@ -1121,7 +1094,6 @@ class pp_fn {
|
|||
case expr_kind::Lambda:
|
||||
case expr_kind::Pi: r = pp_abstraction(e, depth); break;
|
||||
case expr_kind::Type: r = pp_type(e); break;
|
||||
case expr_kind::HEq: r = pp_heq(e, depth); break;
|
||||
case expr_kind::Let: r = pp_let(e, depth); break;
|
||||
case expr_kind::MetaVar: r = pp_metavar(e, depth); break;
|
||||
}
|
||||
|
|
|
@ -22,7 +22,6 @@ static name g_pi_name("forall");
|
|||
static name g_let_name("let");
|
||||
static name g_in_name("in");
|
||||
static name g_arrow_name("->");
|
||||
static name g_eq_name("==");
|
||||
static name g_exists_name("exists");
|
||||
static name g_Exists_name("Exists");
|
||||
static name g_exists_unicode("\u2203");
|
||||
|
@ -237,8 +236,6 @@ scanner::token scanner::read_b_symbol(char prev) {
|
|||
m_name_val = name(m_buffer.c_str());
|
||||
if (m_name_val == g_arrow_name)
|
||||
return token::Arrow;
|
||||
else if (m_name_val == g_eq_name)
|
||||
return token::Eq;
|
||||
else
|
||||
return token::Id;
|
||||
}
|
||||
|
|
|
@ -141,17 +141,6 @@ expr mk_app(unsigned n, expr const * as) {
|
|||
to_app(r)->m_hash = hash_args(new_n, m_args);
|
||||
return r;
|
||||
}
|
||||
expr_heq::expr_heq(expr const & lhs, expr const & rhs):
|
||||
expr_cell(expr_kind::HEq, ::lean::hash(lhs.hash(), rhs.hash()), lhs.has_metavar() || rhs.has_metavar()),
|
||||
m_lhs(lhs),
|
||||
m_rhs(rhs) {
|
||||
}
|
||||
expr_heq::~expr_heq() {}
|
||||
void expr_heq::dealloc(buffer<expr_cell*> & todelete) {
|
||||
dec_ref(m_rhs, todelete);
|
||||
dec_ref(m_lhs, todelete);
|
||||
delete(this);
|
||||
}
|
||||
expr_abstraction::expr_abstraction(expr_kind k, name const & n, expr const & t, expr const & b):
|
||||
expr_cell(k, ::lean::hash(t.hash(), b.hash()), t.has_metavar() || b.has_metavar()),
|
||||
m_name(n),
|
||||
|
@ -245,7 +234,6 @@ void expr_cell::dealloc() {
|
|||
case expr_kind::MetaVar: delete static_cast<expr_metavar*>(it); break;
|
||||
case expr_kind::Type: delete static_cast<expr_type*>(it); break;
|
||||
case expr_kind::Constant: static_cast<expr_const*>(it)->dealloc(todo); break;
|
||||
case expr_kind::HEq: static_cast<expr_heq*>(it)->dealloc(todo); break;
|
||||
case expr_kind::App: static_cast<expr_app*>(it)->dealloc(todo); break;
|
||||
case expr_kind::Lambda: static_cast<expr_lambda*>(it)->dealloc(todo); break;
|
||||
case expr_kind::Pi: static_cast<expr_pi*>(it)->dealloc(todo); break;
|
||||
|
@ -285,7 +273,6 @@ expr copy(expr const & a) {
|
|||
case expr_kind::Type: return mk_type(ty_level(a));
|
||||
case expr_kind::Value: return mk_value(static_cast<expr_value*>(a.raw())->m_val);
|
||||
case expr_kind::App: return mk_app(num_args(a), begin_args(a));
|
||||
case expr_kind::HEq: return mk_heq(heq_lhs(a), heq_rhs(a));
|
||||
case expr_kind::Lambda: return mk_lambda(abst_name(a), abst_domain(a), abst_body(a));
|
||||
case expr_kind::Pi: return mk_pi(abst_name(a), abst_domain(a), abst_body(a));
|
||||
case expr_kind::Let: return mk_let(let_name(a), let_type(a), let_value(a), let_body(a));
|
||||
|
@ -330,7 +317,7 @@ constexpr char g_first_app_size_kind = 32;
|
|||
constexpr char g_small_app_num_args = 32;
|
||||
constexpr bool is_small(expr_kind k) { return 0 <= static_cast<char>(k) && static_cast<char>(k) < g_first_app_size_kind; }
|
||||
static_assert(is_small(expr_kind::Var) && is_small(expr_kind::Constant) && is_small(expr_kind::Value) && is_small(expr_kind::App) &&
|
||||
is_small(expr_kind::Lambda) && is_small(expr_kind::Pi) && is_small(expr_kind::Type) && is_small(expr_kind::HEq) &&
|
||||
is_small(expr_kind::Lambda) && is_small(expr_kind::Pi) && is_small(expr_kind::Type) &&
|
||||
is_small(expr_kind::Let) && is_small(expr_kind::MetaVar), "expr_kind is too big");
|
||||
|
||||
class expr_serializer : public object_serializer<expr, expr_hash_alloc, expr_eqp> {
|
||||
|
@ -373,7 +360,6 @@ class expr_serializer : public object_serializer<expr, expr_hash_alloc, expr_eqp
|
|||
for (unsigned i = 0; i < num_args(a); i++)
|
||||
write_core(arg(a, i));
|
||||
break;
|
||||
case expr_kind::HEq: write_core(heq_lhs(a)); write_core(heq_rhs(a)); break;
|
||||
case expr_kind::Lambda:
|
||||
case expr_kind::Pi: s << abst_name(a); write_core(abst_domain(a)); write_core(abst_body(a)); break;
|
||||
case expr_kind::Let: s << let_name(a); write_core(let_type(a)); write_core(let_value(a)); write_core(let_body(a)); break;
|
||||
|
@ -430,10 +416,6 @@ public:
|
|||
args.push_back(read());
|
||||
return mk_app(args);
|
||||
}
|
||||
case expr_kind::HEq: {
|
||||
expr lhs = read();
|
||||
return mk_heq(lhs, read());
|
||||
}
|
||||
case expr_kind::Lambda: {
|
||||
name n = read_name(d);
|
||||
expr d = read();
|
||||
|
|
|
@ -34,7 +34,6 @@ class value;
|
|||
| Lambda name expr expr
|
||||
| Pi name expr expr
|
||||
| Type universe
|
||||
| Eq expr expr (heterogeneous equality)
|
||||
| Let name expr expr expr
|
||||
| Metavar name local_context
|
||||
|
||||
|
@ -52,7 +51,7 @@ The main API is divided in the following sections
|
|||
- Miscellaneous
|
||||
======================================= */
|
||||
class expr;
|
||||
enum class expr_kind { Var, Constant, Value, App, Lambda, Pi, Type, HEq, Let, MetaVar };
|
||||
enum class expr_kind { Var, Constant, Value, App, Lambda, Pi, Type, Let, MetaVar };
|
||||
class local_entry;
|
||||
/**
|
||||
\brief A metavariable local context is just a list of local_entries.
|
||||
|
@ -142,7 +141,6 @@ public:
|
|||
friend expr mk_constant(name const & n, optional<expr> const & t);
|
||||
friend expr mk_value(value & v);
|
||||
friend expr mk_app(unsigned num_args, expr const * args);
|
||||
friend expr mk_heq(expr const & l, expr const & r);
|
||||
friend expr mk_lambda(name const & n, expr const & t, expr const & e);
|
||||
friend expr mk_pi(name const & n, expr const & t, expr const & e);
|
||||
friend expr mk_type(level const & l);
|
||||
|
@ -213,18 +211,6 @@ public:
|
|||
expr const * begin_args() const { return m_args; }
|
||||
expr const * end_args() const { return m_args + m_num_args; }
|
||||
};
|
||||
/** \brief Heterogeneous equality */
|
||||
class expr_heq : public expr_cell {
|
||||
expr m_lhs;
|
||||
expr m_rhs;
|
||||
friend class expr_cell;
|
||||
void dealloc(buffer<expr_cell*> & todelete);
|
||||
public:
|
||||
expr_heq(expr const & lhs, expr const & rhs);
|
||||
~expr_heq();
|
||||
expr const & get_lhs() const { return m_lhs; }
|
||||
expr const & get_rhs() const { return m_rhs; }
|
||||
};
|
||||
/** \brief Super class for lambda abstraction and pi (functional spaces). */
|
||||
class expr_abstraction : public expr_cell {
|
||||
name m_name;
|
||||
|
@ -391,7 +377,6 @@ inline bool is_var(expr_cell * e) { return e->kind() == expr_kind::Var;
|
|||
inline bool is_constant(expr_cell * e) { return e->kind() == expr_kind::Constant; }
|
||||
inline bool is_value(expr_cell * e) { return e->kind() == expr_kind::Value; }
|
||||
inline bool is_app(expr_cell * e) { return e->kind() == expr_kind::App; }
|
||||
inline bool is_heq(expr_cell * e) { return e->kind() == expr_kind::HEq; }
|
||||
inline bool is_lambda(expr_cell * e) { return e->kind() == expr_kind::Lambda; }
|
||||
inline bool is_pi(expr_cell * e) { return e->kind() == expr_kind::Pi; }
|
||||
inline bool is_type(expr_cell * e) { return e->kind() == expr_kind::Type; }
|
||||
|
@ -403,7 +388,6 @@ inline bool is_var(expr const & e) { return e.kind() == expr_kind::Var;
|
|||
inline bool is_constant(expr const & e) { return e.kind() == expr_kind::Constant; }
|
||||
inline bool is_value(expr const & e) { return e.kind() == expr_kind::Value; }
|
||||
inline bool is_app(expr const & e) { return e.kind() == expr_kind::App; }
|
||||
inline bool is_heq(expr const & e) { return e.kind() == expr_kind::HEq; }
|
||||
inline bool is_lambda(expr const & e) { return e.kind() == expr_kind::Lambda; }
|
||||
inline bool is_pi(expr const & e) { return e.kind() == expr_kind::Pi; }
|
||||
bool is_arrow(expr const & e);
|
||||
|
@ -430,8 +414,6 @@ inline expr mk_app(expr const & e1, expr const & e2) { return mk_app({e1, e2});
|
|||
inline expr mk_app(expr const & e1, expr const & e2, expr const & e3) { return mk_app({e1, e2, e3}); }
|
||||
inline expr mk_app(expr const & e1, expr const & e2, expr const & e3, expr const & e4) { return mk_app({e1, e2, e3, e4}); }
|
||||
inline expr mk_app(expr const & e1, expr const & e2, expr const & e3, expr const & e4, expr const & e5) { return mk_app({e1, e2, e3, e4, e5}); }
|
||||
inline expr mk_heq(expr const & l, expr const & r) { return expr(new expr_heq(l, r)); }
|
||||
inline expr HEq(expr const & l, expr const & r) { return mk_heq(l, r); }
|
||||
inline expr mk_lambda(name const & n, expr const & t, expr const & e) { return expr(new expr_lambda(n, t, e)); }
|
||||
inline expr mk_pi(name const & n, expr const & t, expr const & e) { return expr(new expr_pi(n, t, e)); }
|
||||
inline bool is_default_arrow_var_name(name const & n) { return n == "a"; }
|
||||
|
@ -463,7 +445,6 @@ inline expr expr::operator()(expr const & a1, expr const & a2, expr const & a3,
|
|||
inline expr_var * to_var(expr_cell * e) { lean_assert(is_var(e)); return static_cast<expr_var*>(e); }
|
||||
inline expr_const * to_constant(expr_cell * e) { lean_assert(is_constant(e)); return static_cast<expr_const*>(e); }
|
||||
inline expr_app * to_app(expr_cell * e) { lean_assert(is_app(e)); return static_cast<expr_app*>(e); }
|
||||
inline expr_heq * to_heq(expr_cell * e) { lean_assert(is_heq(e)); return static_cast<expr_heq*>(e); }
|
||||
inline expr_abstraction * to_abstraction(expr_cell * e) { lean_assert(is_abstraction(e)); return static_cast<expr_abstraction*>(e); }
|
||||
inline expr_lambda * to_lambda(expr_cell * e) { lean_assert(is_lambda(e)); return static_cast<expr_lambda*>(e); }
|
||||
inline expr_pi * to_pi(expr_cell * e) { lean_assert(is_pi(e)); return static_cast<expr_pi*>(e); }
|
||||
|
@ -474,7 +455,6 @@ inline expr_metavar * to_metavar(expr_cell * e) { lean_assert(is_metavar
|
|||
inline expr_var * to_var(expr const & e) { return to_var(e.raw()); }
|
||||
inline expr_const * to_constant(expr const & e) { return to_constant(e.raw()); }
|
||||
inline expr_app * to_app(expr const & e) { return to_app(e.raw()); }
|
||||
inline expr_heq * to_heq(expr const & e) { return to_heq(e.raw()); }
|
||||
inline expr_abstraction * to_abstraction(expr const & e) { return to_abstraction(e.raw()); }
|
||||
inline expr_lambda * to_lambda(expr const & e) { return to_lambda(e.raw()); }
|
||||
inline expr_pi * to_pi(expr const & e) { return to_pi(e.raw()); }
|
||||
|
@ -496,8 +476,6 @@ inline optional<expr> const & const_type(expr_cell * e) { return to_constant(e)
|
|||
inline value const & to_value(expr_cell * e) { lean_assert(is_value(e)); return static_cast<expr_value*>(e)->get_value(); }
|
||||
inline unsigned num_args(expr_cell * e) { return to_app(e)->get_num_args(); }
|
||||
inline expr const & arg(expr_cell * e, unsigned idx) { return to_app(e)->get_arg(idx); }
|
||||
inline expr const & heq_lhs(expr_cell * e) { return to_heq(e)->get_lhs(); }
|
||||
inline expr const & heq_rhs(expr_cell * e) { return to_heq(e)->get_rhs(); }
|
||||
inline name const & abst_name(expr_cell * e) { return to_abstraction(e)->get_name(); }
|
||||
inline expr const & abst_domain(expr_cell * e) { return to_abstraction(e)->get_domain(); }
|
||||
inline expr const & abst_body(expr_cell * e) { return to_abstraction(e)->get_body(); }
|
||||
|
@ -529,8 +507,6 @@ inline unsigned num_args(expr const & e) { return to_app(e)->ge
|
|||
inline expr const & arg(expr const & e, unsigned idx) { return to_app(e)->get_arg(idx); }
|
||||
inline expr const * begin_args(expr const & e) { return to_app(e)->begin_args(); }
|
||||
inline expr const * end_args(expr const & e) { return to_app(e)->end_args(); }
|
||||
inline expr const & heq_lhs(expr const & e) { return to_heq(e)->get_lhs(); }
|
||||
inline expr const & heq_rhs(expr const & e) { return to_heq(e)->get_rhs(); }
|
||||
inline name const & abst_name(expr const & e) { return to_abstraction(e)->get_name(); }
|
||||
inline expr const & abst_domain(expr const & e) { return to_abstraction(e)->get_domain(); }
|
||||
inline expr const & abst_body(expr const & e) { return to_abstraction(e)->get_body(); }
|
||||
|
@ -650,18 +626,6 @@ template<typename F> expr update_let(expr const & e, F f) {
|
|||
else
|
||||
return e;
|
||||
}
|
||||
template<typename F> expr update_heq(expr const & e, F f) {
|
||||
static_assert(std::is_same<typename std::result_of<F(expr const &, expr const &)>::type,
|
||||
std::pair<expr, expr>>::value,
|
||||
"update_heq: return type of f is not pair<expr, expr>");
|
||||
expr const & old_l = heq_lhs(e);
|
||||
expr const & old_r = heq_rhs(e);
|
||||
std::pair<expr, expr> p = f(old_l, old_r);
|
||||
if (!is_eqp(p.first, old_l) || !is_eqp(p.second, old_r))
|
||||
return mk_heq(p.first, p.second);
|
||||
else
|
||||
return e;
|
||||
}
|
||||
template<typename F> expr update_metavar(expr const & e, name const & n, F f) {
|
||||
static_assert(std::is_same<typename std::result_of<F(local_entry const &)>::type, local_entry>::value,
|
||||
"update_metavar: return type of f(local_entry) is not local_entry");
|
||||
|
|
|
@ -64,7 +64,6 @@ class expr_eq_fn {
|
|||
if (!apply(arg(a, i), arg(b, i)))
|
||||
return false;
|
||||
return true;
|
||||
case expr_kind::HEq: return apply(heq_lhs(a), heq_lhs(b)) && apply(heq_rhs(a), heq_rhs(b));
|
||||
case expr_kind::Lambda: // Remark: we ignore get_abs_name because we want alpha-equivalence
|
||||
case expr_kind::Pi: return apply(abst_domain(a), abst_domain(b)) && apply(abst_body(a), abst_body(b));
|
||||
case expr_kind::Type: return ty_level(a) == ty_level(b);
|
||||
|
|
|
@ -85,10 +85,6 @@ class for_each_fn {
|
|||
}
|
||||
goto begin_loop;
|
||||
}
|
||||
case expr_kind::HEq:
|
||||
todo.emplace_back(heq_rhs(e), offset);
|
||||
todo.emplace_back(heq_lhs(e), offset);
|
||||
goto begin_loop;
|
||||
case expr_kind::Lambda:
|
||||
case expr_kind::Pi:
|
||||
todo.emplace_back(abst_body(e), offset + 1);
|
||||
|
|
|
@ -40,7 +40,7 @@ protected:
|
|||
return true;
|
||||
case expr_kind::Var:
|
||||
return var_idx(e) >= offset;
|
||||
case expr_kind::App: case expr_kind::HEq: case expr_kind::Lambda: case expr_kind::Pi: case expr_kind::Let:
|
||||
case expr_kind::App: case expr_kind::Lambda: case expr_kind::Pi: case expr_kind::Let:
|
||||
break;
|
||||
}
|
||||
|
||||
|
@ -78,9 +78,6 @@ protected:
|
|||
case expr_kind::App:
|
||||
result = std::any_of(begin_args(e), end_args(e), [=](expr const & arg){ return apply(arg, offset); });
|
||||
break;
|
||||
case expr_kind::HEq:
|
||||
result = apply(heq_lhs(e), offset) || apply(heq_rhs(e), offset);
|
||||
break;
|
||||
case expr_kind::Lambda:
|
||||
case expr_kind::Pi:
|
||||
result = apply(abst_domain(e), offset) || apply(abst_body(e), offset + 1);
|
||||
|
@ -170,7 +167,7 @@ class free_var_range_fn {
|
|||
return 0;
|
||||
case expr_kind::Var:
|
||||
return var_idx(e) + 1;
|
||||
case expr_kind::MetaVar: case expr_kind::App: case expr_kind::HEq:
|
||||
case expr_kind::MetaVar: case expr_kind::App:
|
||||
case expr_kind::Lambda: case expr_kind::Pi: case expr_kind::Let:
|
||||
break;
|
||||
}
|
||||
|
@ -203,9 +200,6 @@ class free_var_range_fn {
|
|||
for (auto const & c : args(e))
|
||||
result = std::max(result, apply(c));
|
||||
break;
|
||||
case expr_kind::HEq:
|
||||
result = std::max(apply(heq_lhs(e)), apply(heq_rhs(e)));
|
||||
break;
|
||||
case expr_kind::Lambda:
|
||||
case expr_kind::Pi:
|
||||
result = std::max(apply(abst_domain(e)), dec(apply(abst_body(e))));
|
||||
|
@ -287,7 +281,7 @@ protected:
|
|||
return true; // assume that any free variable can occur in the metavariable
|
||||
case expr_kind::Var:
|
||||
return in_interval(var_idx(e), offset);
|
||||
case expr_kind::App: case expr_kind::HEq: case expr_kind::Lambda: case expr_kind::Pi: case expr_kind::Let:
|
||||
case expr_kind::App: case expr_kind::Lambda: case expr_kind::Pi: case expr_kind::Let:
|
||||
break;
|
||||
}
|
||||
|
||||
|
@ -326,9 +320,6 @@ protected:
|
|||
case expr_kind::App:
|
||||
result = std::any_of(begin_args(e), end_args(e), [=](expr const & arg){ return apply(arg, offset); });
|
||||
break;
|
||||
case expr_kind::HEq:
|
||||
result = apply(heq_lhs(e), offset) || apply(heq_rhs(e), offset);
|
||||
break;
|
||||
case expr_kind::Lambda:
|
||||
case expr_kind::Pi:
|
||||
result = apply(abst_domain(e), offset) || apply(abst_body(e), offset + 1);
|
||||
|
|
|
@ -16,6 +16,8 @@ namespace lean {
|
|||
// Bultin universe variables m and u
|
||||
static level u_lvl(name("U"));
|
||||
expr const TypeU = Type(u_lvl);
|
||||
static level up_lvl(name("U'"));
|
||||
expr const TypeUp = Type(up_lvl);
|
||||
// =======================================
|
||||
|
||||
// =======================================
|
||||
|
@ -78,6 +80,42 @@ bool is_false(expr const & e) {
|
|||
}
|
||||
// =======================================
|
||||
|
||||
// =======================================
|
||||
// Equality
|
||||
static name g_eq_name("eq");
|
||||
static format g_eq_fmt(g_eq_name);
|
||||
/**
|
||||
\brief Semantic attachment for if-then-else operator with type
|
||||
<code>Pi (A : Type), Bool -> A -> A -> A</code>
|
||||
*/
|
||||
class eq_fn_value : public value {
|
||||
expr m_type;
|
||||
static expr mk_type() {
|
||||
expr A = Const("A");
|
||||
// Pi (A: TypeUp), A -> A -> Bool
|
||||
return Pi({A, TypeUp}, (A >> (A >> Bool)));
|
||||
}
|
||||
public:
|
||||
eq_fn_value():m_type(mk_type()) {}
|
||||
virtual ~eq_fn_value() {}
|
||||
virtual expr get_type() const { return m_type; }
|
||||
virtual name get_name() const { return g_eq_name; }
|
||||
virtual optional<expr> normalize(unsigned num_args, expr const * args) const {
|
||||
if (num_args == 4 && is_value(args[2]) && is_value(args[3]) && typeid(to_value(args[2])) == typeid(to_value(args[3]))) {
|
||||
return some_expr(mk_bool_value(args[2] == args[3]));
|
||||
} else {
|
||||
return none_expr();
|
||||
}
|
||||
}
|
||||
virtual void write(serializer & s) const { s << "eq"; }
|
||||
};
|
||||
MK_BUILTIN(eq_fn, eq_fn_value);
|
||||
MK_IS_BUILTIN(is_eq_fn, mk_eq_fn());
|
||||
static register_builtin_fn eq_blt("eq", []() { return mk_eq_fn(); });
|
||||
static value::register_deserializer_fn eq_ds("eq", [](deserializer & ) { return mk_eq_fn(); });
|
||||
// =======================================
|
||||
|
||||
|
||||
void import_kernel(environment const & env, io_state const & ios) {
|
||||
env->import("kernel", ios);
|
||||
}
|
||||
|
|
|
@ -11,6 +11,7 @@ Author: Leonardo de Moura
|
|||
namespace lean {
|
||||
// See src/builtin/kernel.lean for signatures.
|
||||
extern expr const TypeU;
|
||||
extern expr const TypeUp;
|
||||
|
||||
/** \brief Return the Lean Boolean type. */
|
||||
expr mk_bool_type();
|
||||
|
@ -33,6 +34,11 @@ bool is_true(expr const & e);
|
|||
/** \brief Return true iff \c e is the Lean false value. */
|
||||
bool is_false(expr const & e);
|
||||
|
||||
expr mk_eq_fn();
|
||||
bool is_eq_fn(expr const & e);
|
||||
inline expr mk_eq(expr const & A, expr const & lhs, expr const & rhs) { return mk_app(mk_eq_fn(), A, lhs, rhs); }
|
||||
inline bool is_eq(expr const & e) { return is_app(e) && is_eq_fn(arg(e, 0)); }
|
||||
|
||||
inline expr Implies(expr const & e1, expr const & e2) { return mk_implies(e1, e2); }
|
||||
inline expr And(expr const & e1, expr const & e2) { return mk_and(e1, e2); }
|
||||
inline expr Or(expr const & e1, expr const & e2) { return mk_or(e1, e2); }
|
||||
|
|
|
@ -8,14 +8,14 @@ Released under Apache 2.0 license as described in the file LICENSE.
|
|||
namespace lean {
|
||||
MK_CONSTANT(Bool, name("Bool"));
|
||||
MK_CONSTANT(TypeU, name("TypeU"));
|
||||
MK_CONSTANT(TypeU_, name("TypeU_"));
|
||||
MK_CONSTANT(not_fn, name("not"));
|
||||
MK_CONSTANT(or_fn, name("or"));
|
||||
MK_CONSTANT(and_fn, name("and"));
|
||||
MK_CONSTANT(neq_fn, name("neq"));
|
||||
MK_CONSTANT(implies_fn, name("implies"));
|
||||
MK_CONSTANT(iff_fn, name("iff"));
|
||||
MK_CONSTANT(exists_fn, name("exists"));
|
||||
MK_CONSTANT(eq_fn, name("eq"));
|
||||
MK_CONSTANT(neq_fn, name("neq"));
|
||||
MK_CONSTANT(em_fn, name("em"));
|
||||
MK_CONSTANT(case_fn, name("case"));
|
||||
MK_CONSTANT(refl_fn, name("refl"));
|
||||
|
@ -53,16 +53,11 @@ MK_CONSTANT(trans_fn, name("trans"));
|
|||
MK_CONSTANT(ne_symm_fn, name("ne_symm"));
|
||||
MK_CONSTANT(eq_ne_trans_fn, name("eq_ne_trans"));
|
||||
MK_CONSTANT(ne_eq_trans_fn, name("ne_eq_trans"));
|
||||
MK_CONSTANT(heq_congr_fn, name("heq_congr"));
|
||||
MK_CONSTANT(heq_congrl_fn, name("heq_congrl"));
|
||||
MK_CONSTANT(heq_congrr_fn, name("heq_congrr"));
|
||||
MK_CONSTANT(eqt_elim_fn, name("eqt_elim"));
|
||||
MK_CONSTANT(eqf_elim_fn, name("eqf_elim"));
|
||||
MK_CONSTANT(congr1_fn, name("congr1"));
|
||||
MK_CONSTANT(congr2_fn, name("congr2"));
|
||||
MK_CONSTANT(congr_fn, name("congr"));
|
||||
MK_CONSTANT(scongr2_fn, name("scongr2"));
|
||||
MK_CONSTANT(scongr_fn, name("scongr"));
|
||||
MK_CONSTANT(exists_elim_fn, name("exists_elim"));
|
||||
MK_CONSTANT(exists_intro_fn, name("exists_intro"));
|
||||
MK_CONSTANT(boolext_fn, name("boolext"));
|
||||
|
|
|
@ -9,6 +9,8 @@ expr mk_Bool();
|
|||
bool is_Bool(expr const & e);
|
||||
expr mk_TypeU();
|
||||
bool is_TypeU(expr const & e);
|
||||
expr mk_TypeU_();
|
||||
bool is_TypeU_(expr const & e);
|
||||
expr mk_not_fn();
|
||||
bool is_not_fn(expr const & e);
|
||||
inline bool is_not(expr const & e) { return is_app(e) && is_not_fn(arg(e, 0)); }
|
||||
|
@ -21,6 +23,10 @@ expr mk_and_fn();
|
|||
bool is_and_fn(expr const & e);
|
||||
inline bool is_and(expr const & e) { return is_app(e) && is_and_fn(arg(e, 0)); }
|
||||
inline expr mk_and(expr const & e1, expr const & e2) { return mk_app({mk_and_fn(), e1, e2}); }
|
||||
expr mk_neq_fn();
|
||||
bool is_neq_fn(expr const & e);
|
||||
inline bool is_neq(expr const & e) { return is_app(e) && is_neq_fn(arg(e, 0)); }
|
||||
inline expr mk_neq(expr const & e1, expr const & e2, expr const & e3) { return mk_app({mk_neq_fn(), e1, e2, e3}); }
|
||||
expr mk_implies_fn();
|
||||
bool is_implies_fn(expr const & e);
|
||||
inline bool is_implies(expr const & e) { return is_app(e) && is_implies_fn(arg(e, 0)); }
|
||||
|
@ -33,14 +39,6 @@ expr mk_exists_fn();
|
|||
bool is_exists_fn(expr const & e);
|
||||
inline bool is_exists(expr const & e) { return is_app(e) && is_exists_fn(arg(e, 0)); }
|
||||
inline expr mk_exists(expr const & e1, expr const & e2) { return mk_app({mk_exists_fn(), e1, e2}); }
|
||||
expr mk_eq_fn();
|
||||
bool is_eq_fn(expr const & e);
|
||||
inline bool is_eq(expr const & e) { return is_app(e) && is_eq_fn(arg(e, 0)); }
|
||||
inline expr mk_eq(expr const & e1, expr const & e2, expr const & e3) { return mk_app({mk_eq_fn(), e1, e2, e3}); }
|
||||
expr mk_neq_fn();
|
||||
bool is_neq_fn(expr const & e);
|
||||
inline bool is_neq(expr const & e) { return is_app(e) && is_neq_fn(arg(e, 0)); }
|
||||
inline expr mk_neq(expr const & e1, expr const & e2, expr const & e3) { return mk_app({mk_neq_fn(), e1, e2, e3}); }
|
||||
expr mk_em_fn();
|
||||
bool is_em_fn(expr const & e);
|
||||
inline expr mk_em_th(expr const & e1) { return mk_app({mk_em_fn(), e1}); }
|
||||
|
@ -151,15 +149,6 @@ inline expr mk_eq_ne_trans_th(expr const & e1, expr const & e2, expr const & e3,
|
|||
expr mk_ne_eq_trans_fn();
|
||||
bool is_ne_eq_trans_fn(expr const & e);
|
||||
inline expr mk_ne_eq_trans_th(expr const & e1, expr const & e2, expr const & e3, expr const & e4, expr const & e5, expr const & e6) { return mk_app({mk_ne_eq_trans_fn(), e1, e2, e3, e4, e5, e6}); }
|
||||
expr mk_heq_congr_fn();
|
||||
bool is_heq_congr_fn(expr const & e);
|
||||
inline expr mk_heq_congr_th(expr const & e1, expr const & e2, expr const & e3, expr const & e4, expr const & e5, expr const & e6, expr const & e7) { return mk_app({mk_heq_congr_fn(), e1, e2, e3, e4, e5, e6, e7}); }
|
||||
expr mk_heq_congrl_fn();
|
||||
bool is_heq_congrl_fn(expr const & e);
|
||||
inline expr mk_heq_congrl_th(expr const & e1, expr const & e2, expr const & e3, expr const & e4, expr const & e5) { return mk_app({mk_heq_congrl_fn(), e1, e2, e3, e4, e5}); }
|
||||
expr mk_heq_congrr_fn();
|
||||
bool is_heq_congrr_fn(expr const & e);
|
||||
inline expr mk_heq_congrr_th(expr const & e1, expr const & e2, expr const & e3, expr const & e4, expr const & e5) { return mk_app({mk_heq_congrr_fn(), e1, e2, e3, e4, e5}); }
|
||||
expr mk_eqt_elim_fn();
|
||||
bool is_eqt_elim_fn(expr const & e);
|
||||
inline expr mk_eqt_elim_th(expr const & e1, expr const & e2) { return mk_app({mk_eqt_elim_fn(), e1, e2}); }
|
||||
|
@ -175,12 +164,6 @@ inline expr mk_congr2_th(expr const & e1, expr const & e2, expr const & e3, expr
|
|||
expr mk_congr_fn();
|
||||
bool is_congr_fn(expr const & e);
|
||||
inline expr mk_congr_th(expr const & e1, expr const & e2, expr const & e3, expr const & e4, expr const & e5, expr const & e6, expr const & e7, expr const & e8) { return mk_app({mk_congr_fn(), e1, e2, e3, e4, e5, e6, e7, e8}); }
|
||||
expr mk_scongr2_fn();
|
||||
bool is_scongr2_fn(expr const & e);
|
||||
inline expr mk_scongr2_th(expr const & e1, expr const & e2, expr const & e3, expr const & e4, expr const & e5, expr const & e6) { return mk_app({mk_scongr2_fn(), e1, e2, e3, e4, e5, e6}); }
|
||||
expr mk_scongr_fn();
|
||||
bool is_scongr_fn(expr const & e);
|
||||
inline expr mk_scongr_th(expr const & e1, expr const & e2, expr const & e3, expr const & e4, expr const & e5, expr const & e6, expr const & e7, expr const & e8) { return mk_app({mk_scongr_fn(), e1, e2, e3, e4, e5, e6, e7, e8}); }
|
||||
expr mk_exists_elim_fn();
|
||||
bool is_exists_elim_fn(expr const & e);
|
||||
inline expr mk_exists_elim_th(expr const & e1, expr const & e2, expr const & e3, expr const & e4, expr const & e5) { return mk_app({mk_exists_elim_fn(), e1, e2, e3, e4, e5}); }
|
||||
|
|
|
@ -56,11 +56,6 @@ struct max_sharing_fn::imp {
|
|||
cache(r);
|
||||
return r;
|
||||
}
|
||||
case expr_kind::HEq : {
|
||||
expr r = update_heq(a, [=](expr const & l, expr const & r) { return std::make_pair(apply(l), apply(r)); });
|
||||
cache(r);
|
||||
return r;
|
||||
}
|
||||
case expr_kind::Lambda:
|
||||
case expr_kind::Pi: {
|
||||
expr r = update_abst(a, [=](expr const & t, expr const & b) { return std::make_pair(apply(t), apply(b)); });
|
||||
|
|
|
@ -309,16 +309,6 @@ class normalizer::imp {
|
|||
}
|
||||
break;
|
||||
}
|
||||
case expr_kind::HEq: {
|
||||
expr new_lhs = normalize(heq_lhs(a), s, k);
|
||||
expr new_rhs = normalize(heq_rhs(a), s, k);
|
||||
if (is_value(new_lhs) && is_value(new_rhs) && !is_closure(new_lhs) && !is_closure(new_rhs) && typeid(to_value(new_lhs)) == typeid(to_value(new_rhs))) {
|
||||
r = mk_bool_value(new_lhs == new_rhs);
|
||||
} else {
|
||||
r = mk_heq(new_lhs, new_rhs);
|
||||
}
|
||||
break;
|
||||
}
|
||||
case expr_kind::Let: {
|
||||
expr v = normalize(let_value(a), s, k);
|
||||
{
|
||||
|
|
|
@ -156,14 +156,6 @@ public:
|
|||
pop_rs(num);
|
||||
break;
|
||||
}
|
||||
case expr_kind::HEq:
|
||||
if (check_index(f, 0) && !visit(heq_lhs(e), offset))
|
||||
goto begin_loop;
|
||||
if (check_index(f, 1) && !visit(heq_rhs(e), offset))
|
||||
goto begin_loop;
|
||||
r = update_heq(e, rs(-2), rs(-1));
|
||||
pop_rs(2);
|
||||
break;
|
||||
case expr_kind::Pi: case expr_kind::Lambda:
|
||||
if (check_index(f, 0) && !visit(abst_domain(e), offset))
|
||||
goto begin_loop;
|
||||
|
|
|
@ -22,10 +22,6 @@ expr replace_visitor::visit_app(expr const & e, context const & ctx) {
|
|||
lean_assert(is_app(e));
|
||||
return update_app(e, [&](expr const & c) { return visit(c, ctx); });
|
||||
}
|
||||
expr replace_visitor::visit_heq(expr const & e, context const & ctx) {
|
||||
lean_assert(is_heq(e));
|
||||
return update_heq(e, [&](expr const & l, expr const & r) { return std::make_pair(visit(l, ctx), visit(r, ctx)); });
|
||||
}
|
||||
expr replace_visitor::visit_abst(expr const & e, context const & ctx) {
|
||||
lean_assert(is_abstraction(e));
|
||||
return update_abst(e, [&](expr const & t, expr const & b) {
|
||||
|
@ -80,7 +76,6 @@ expr replace_visitor::visit(expr const & e, context const & ctx) {
|
|||
case expr_kind::Var: return save_result(e, visit_var(e, ctx), shared);
|
||||
case expr_kind::MetaVar: return save_result(e, visit_metavar(e, ctx), shared);
|
||||
case expr_kind::App: return save_result(e, visit_app(e, ctx), shared);
|
||||
case expr_kind::HEq: return save_result(e, visit_heq(e, ctx), shared);
|
||||
case expr_kind::Lambda: return save_result(e, visit_lambda(e, ctx), shared);
|
||||
case expr_kind::Pi: return save_result(e, visit_pi(e, ctx), shared);
|
||||
case expr_kind::Let: return save_result(e, visit_let(e, ctx), shared);
|
||||
|
|
|
@ -31,7 +31,6 @@ protected:
|
|||
virtual expr visit_var(expr const &, context const &);
|
||||
virtual expr visit_metavar(expr const &, context const &);
|
||||
virtual expr visit_app(expr const &, context const &);
|
||||
virtual expr visit_heq(expr const &, context const &);
|
||||
virtual expr visit_abst(expr const &, context const &);
|
||||
virtual expr visit_lambda(expr const &, context const &);
|
||||
virtual expr visit_pi(expr const &, context const &);
|
||||
|
|
|
@ -48,7 +48,7 @@ class type_checker::imp {
|
|||
return u;
|
||||
if (has_metavar(u) && m_menv && m_uc) {
|
||||
justification jst = mk_type_expected_justification(ctx, s);
|
||||
m_uc->push_back(mk_convertible_constraint(ctx, e, TypeU, jst));
|
||||
m_uc->push_back(mk_convertible_constraint(ctx, e, TypeUp, jst));
|
||||
return u;
|
||||
}
|
||||
u = normalize(e, ctx, true);
|
||||
|
@ -176,10 +176,6 @@ class type_checker::imp {
|
|||
}
|
||||
case expr_kind::Type:
|
||||
return mk_type(ty_level(e) + 1);
|
||||
case expr_kind::HEq:
|
||||
// cheap when we are just inferring types
|
||||
if (m_infer_only)
|
||||
return mk_bool_type();
|
||||
case expr_kind::App: case expr_kind::Lambda:
|
||||
case expr_kind::Pi: case expr_kind::Let:
|
||||
break; // expensive cases
|
||||
|
@ -241,11 +237,6 @@ class type_checker::imp {
|
|||
f_t = check_pi(f_t, e, ctx);
|
||||
}
|
||||
}
|
||||
case expr_kind::HEq:
|
||||
lean_assert(!m_infer_only);
|
||||
infer_type_core(heq_lhs(e), ctx);
|
||||
infer_type_core(heq_rhs(e), ctx);
|
||||
return save_result(e, mk_bool_type(), shared);
|
||||
case expr_kind::Lambda:
|
||||
if (!m_infer_only) {
|
||||
expr d = infer_type_core(abst_domain(e), ctx);
|
||||
|
@ -423,8 +414,6 @@ public:
|
|||
switch (e.kind()) {
|
||||
case expr_kind::Lambda: case expr_kind::Type:
|
||||
return false;
|
||||
case expr_kind::HEq:
|
||||
return true;
|
||||
case expr_kind::Pi:
|
||||
return is_proposition(abst_body(e), extend(ctx, abst_name(e), abst_domain(e)), menv);
|
||||
default:
|
||||
|
|
|
@ -66,11 +66,4 @@ expr update_let(expr const & let, optional<expr> const & t, expr const & v, expr
|
|||
else
|
||||
return mk_let(let_name(let), t, v, b);
|
||||
}
|
||||
|
||||
expr update_heq(expr const & eq, expr const & l, expr const & r) {
|
||||
if (is_eqp(heq_lhs(eq), l) && is_eqp(heq_rhs(eq), r))
|
||||
return eq;
|
||||
else
|
||||
return mk_heq(l, r);
|
||||
}
|
||||
}
|
||||
|
|
|
@ -43,7 +43,6 @@ class deep_copy_fn {
|
|||
new_args.push_back(apply(old_arg));
|
||||
return save_result(a, mk_app(new_args), sh);
|
||||
}
|
||||
case expr_kind::HEq: return save_result(a, mk_heq(apply(heq_lhs(a)), apply(heq_rhs(a))), sh);
|
||||
case expr_kind::Lambda: return save_result(a, mk_lambda(abst_name(a), apply(abst_domain(a)), apply(abst_body(a))), sh);
|
||||
case expr_kind::Pi: return save_result(a, mk_pi(abst_name(a), apply(abst_domain(a)), apply(abst_body(a))), sh);
|
||||
case expr_kind::Let: return save_result(a, mk_let(let_name(a), apply(let_type(a)), apply(let_value(a)), apply(let_body(a))), sh);
|
||||
|
|
|
@ -620,18 +620,11 @@ class elaborator::imp {
|
|||
}
|
||||
}
|
||||
|
||||
void process_eq(context const & ctx, expr & a) {
|
||||
if (is_heq(a) && m_use_normalizer) {
|
||||
a = normalize(ctx, a);
|
||||
}
|
||||
}
|
||||
|
||||
expr normalize_step(context const & ctx, expr const & a) {
|
||||
expr new_a = a;
|
||||
process_let(new_a);
|
||||
process_var(ctx, new_a);
|
||||
process_app(ctx, new_a);
|
||||
process_eq(ctx, new_a);
|
||||
return new_a;
|
||||
}
|
||||
|
||||
|
@ -840,17 +833,6 @@ class elaborator::imp {
|
|||
push_new_eq_constraint(new_state.m_active_cnstrs, ctx, update_app(a, 0, h_i), arg(b, i), new_assumption);
|
||||
}
|
||||
imitation = mk_lambda(arg_types, mk_app(imitation_args));
|
||||
} else if (is_heq(b)) {
|
||||
// Imitation for equality
|
||||
// Assign f_a <- fun (x_1 : T_1) ... (x_{num_a} : T_{num_a}), (h_1 x_1 ... x_{num_a}) = (h_2 x_1 ... x_{num_a})
|
||||
// New constraints (h_1 a_1 ... a_{num_a}) == eq_lhs(b)
|
||||
// (h_2 a_1 ... a_{num_a}) == eq_rhs(b)
|
||||
expr h_1 = new_state.m_menv->mk_metavar(ctx);
|
||||
expr h_2 = new_state.m_menv->mk_metavar(ctx);
|
||||
push_new_eq_constraint(new_state.m_active_cnstrs, ctx, update_app(a, 0, h_1), heq_lhs(b), new_assumption);
|
||||
push_new_eq_constraint(new_state.m_active_cnstrs, ctx, update_app(a, 0, h_2), heq_rhs(b), new_assumption);
|
||||
imitation = mk_lambda(arg_types, mk_heq(mk_app_vars(add_lift(h_1, 0, num_a - 1), num_a - 1),
|
||||
mk_app_vars(add_lift(h_2, 0, num_a - 1), num_a - 1)));
|
||||
} else if (is_abstraction(b)) {
|
||||
// Imitation for lambdas and Pis
|
||||
// Assign f_a <- fun (x_1 : T_1) ... (x_{num_a} : T_{num_a}),
|
||||
|
@ -1058,28 +1040,6 @@ class elaborator::imp {
|
|||
}
|
||||
}
|
||||
|
||||
/**
|
||||
\brief Similar to imitate_abstraction, but b is a heterogeneous equality.
|
||||
*/
|
||||
void imitate_equality(expr const & a, expr const & b, unification_constraint const & c) {
|
||||
lean_assert(is_metavar(a));
|
||||
static_cast<void>(b); // this line is just to avoid a warning, b is only used in an assertion
|
||||
lean_assert(is_heq(b));
|
||||
lean_assert(!is_assigned(a));
|
||||
lean_assert(has_local_context(a));
|
||||
// imitate
|
||||
push_active(c);
|
||||
// Create a fresh meta variable for the lhs and rhs of b.
|
||||
// The new metavariables have the same context of a.
|
||||
expr m = mk_metavar(metavar_name(a));
|
||||
context ctx_m = m_state.m_menv->get_context(m);
|
||||
expr h1 = m_state.m_menv->mk_metavar(ctx_m);
|
||||
expr h2 = m_state.m_menv->mk_metavar(ctx_m);
|
||||
expr imitation = mk_heq(h1, h2);
|
||||
justification new_jst(new imitation_justification(c));
|
||||
push_new_constraint(true, ctx_m, m, imitation, new_jst);
|
||||
}
|
||||
|
||||
/**
|
||||
\brief Process a constraint <tt>ctx |- a == b</tt> where \c a is of the form <tt>?m[(inst:i t), ...]</tt>.
|
||||
We perform a "case split",
|
||||
|
@ -1138,9 +1098,6 @@ class elaborator::imp {
|
|||
} else if (is_app(b) && !has_metavar(arg(b, 0))) {
|
||||
imitate_application(a, b, c);
|
||||
return true;
|
||||
} else if (is_heq(b)) {
|
||||
imitate_equality(a, b, c);
|
||||
return true;
|
||||
}
|
||||
}
|
||||
return false;
|
||||
|
@ -1179,16 +1136,16 @@ class elaborator::imp {
|
|||
// We approximate and only consider the most useful ones.
|
||||
justification new_jst(new destruct_justification(c));
|
||||
if (is_bool(a)) {
|
||||
expr choices[3] = { Bool, Type(), TypeU };
|
||||
push_active(mk_choice_constraint(get_context(c), b, 3, choices, new_jst));
|
||||
expr choices[4] = { Bool, Type(), TypeU, TypeUp };
|
||||
push_active(mk_choice_constraint(get_context(c), b, 4, choices, new_jst));
|
||||
return true;
|
||||
} else if (m_env->is_ge(ty_level(a), m_U)) {
|
||||
expr choices[2] = { a, Type(ty_level(a) + 1) };
|
||||
push_active(mk_choice_constraint(get_context(c), b, 2, choices, new_jst));
|
||||
expr choices[3] = { a, Type(ty_level(a) + 1), TypeUp };
|
||||
push_active(mk_choice_constraint(get_context(c), b, 3, choices, new_jst));
|
||||
return true;
|
||||
} else {
|
||||
expr choices[3] = { a, Type(ty_level(a) + 1), TypeU };
|
||||
push_active(mk_choice_constraint(get_context(c), b, 3, choices, new_jst));
|
||||
expr choices[4] = { a, Type(ty_level(a) + 1), TypeU };
|
||||
push_active(mk_choice_constraint(get_context(c), b, 4, choices, new_jst));
|
||||
return true;
|
||||
}
|
||||
} else {
|
||||
|
@ -1253,6 +1210,10 @@ class elaborator::imp {
|
|||
expr choices[4] = { TypeU, Type(level() + 1), Type(), Bool };
|
||||
push_active(mk_choice_constraint(get_context(c), a, 4, choices, new_jst));
|
||||
return true;
|
||||
} else if (b == TypeUp) {
|
||||
expr choices[5] = { TypeUp, TypeU, Type(level() + 1), Type(), Bool };
|
||||
push_active(mk_choice_constraint(get_context(c), a, 5, choices, new_jst));
|
||||
return true;
|
||||
} else {
|
||||
level const & lvl = ty_level(b);
|
||||
lean_assert(!lvl.is_bottom());
|
||||
|
@ -1376,6 +1337,8 @@ class elaborator::imp {
|
|||
expr_pair p1 = get_equality_args(a);
|
||||
expr_pair p2 = get_equality_args(b);
|
||||
justification new_jst(new destruct_justification(c));
|
||||
if (is_eq(a) && is_eq(b))
|
||||
push_new_eq_constraint(ctx, arg(a, 1), arg(b, 1), new_jst);
|
||||
push_new_eq_constraint(ctx, p1.first, p2.first, new_jst);
|
||||
push_new_eq_constraint(ctx, p1.second, p2.second, new_jst);
|
||||
return true;
|
||||
|
|
|
@ -9,7 +9,7 @@ Author: Leonardo de Moura
|
|||
|
||||
namespace lean {
|
||||
bool is_equality(expr const & e) {
|
||||
return is_eq(e) || is_iff(e) || is_heq(e);
|
||||
return is_eq(e) || is_iff(e);
|
||||
}
|
||||
|
||||
bool is_equality(expr const & e, expr & lhs, expr & rhs) {
|
||||
|
@ -21,10 +21,6 @@ bool is_equality(expr const & e, expr & lhs, expr & rhs) {
|
|||
lhs = arg(e, 1);
|
||||
rhs = arg(e, 2);
|
||||
return true;
|
||||
} else if (is_heq(e)) {
|
||||
lhs = heq_lhs(e);
|
||||
rhs = heq_rhs(e);
|
||||
return true;
|
||||
} else {
|
||||
return false;
|
||||
}
|
||||
|
@ -35,8 +31,6 @@ expr_pair get_equality_args(expr const & e) {
|
|||
return mk_pair(arg(e, 2), arg(e, 3));
|
||||
} else if (is_iff(e)) {
|
||||
return mk_pair(arg(e, 1), arg(e, 2));
|
||||
} else if (is_heq(e)) {
|
||||
return mk_pair(heq_lhs(e), heq_rhs(e));
|
||||
} else {
|
||||
lean_unreachable(); // LCOV_EXCL_LINE
|
||||
}
|
||||
|
|
|
@ -37,11 +37,6 @@ bool is_lt(expr const & a, expr const & b, bool use_hash) {
|
|||
return is_lt(arg(a, i), arg(b, i), use_hash);
|
||||
}
|
||||
lean_unreachable(); // LCOV_EXCL_LINE
|
||||
case expr_kind::HEq:
|
||||
if (heq_lhs(a) != heq_lhs(b))
|
||||
return is_lt(heq_lhs(a), heq_lhs(b), use_hash);
|
||||
else
|
||||
return is_lt(heq_rhs(a), heq_rhs(b), use_hash);
|
||||
case expr_kind::Lambda: // Remark: we ignore get_abs_name because we want alpha-equivalence
|
||||
case expr_kind::Pi:
|
||||
if (abst_domain(a) != abst_domain(b))
|
||||
|
|
|
@ -62,8 +62,6 @@ optional<substitution> fo_unify(expr e1, expr e2) {
|
|||
}
|
||||
}
|
||||
break;
|
||||
case expr_kind::HEq:
|
||||
lean_unreachable(); break; // LCOV_EXCL_LINE
|
||||
case expr_kind::Lambda: case expr_kind::Pi:
|
||||
todo.emplace_back(abst_body(e1), abst_body(e2));
|
||||
todo.emplace_back(abst_domain(e1), abst_domain(e2));
|
||||
|
|
|
@ -216,8 +216,6 @@ class hop_match_fn {
|
|||
}
|
||||
return true;
|
||||
}
|
||||
case expr_kind::HEq:
|
||||
lean_unreachable(); break; // LCOV_EXCL_LINE
|
||||
case expr_kind::Lambda: case expr_kind::Pi:
|
||||
return
|
||||
match(abst_domain(p), abst_domain(t), ctx, ctx_size) &&
|
||||
|
|
|
@ -323,10 +323,6 @@ static int expr_mk_app(lua_State * L) {
|
|||
return push_expr(L, mk_app(args));
|
||||
}
|
||||
|
||||
static int expr_mk_heq(lua_State * L) {
|
||||
return push_expr(L, mk_heq(to_expr(L, 1), to_expr(L, 2)));
|
||||
}
|
||||
|
||||
static int expr_mk_lambda(lua_State * L) {
|
||||
return push_expr(L, mk_lambda(to_name_ext(L, 1), to_expr(L, 2), to_expr(L, 3)));
|
||||
}
|
||||
|
@ -438,7 +434,6 @@ static int expr_ ## P(lua_State * L) { \
|
|||
EXPR_PRED(is_constant)
|
||||
EXPR_PRED(is_var)
|
||||
EXPR_PRED(is_app)
|
||||
EXPR_PRED(is_heq)
|
||||
EXPR_PRED(is_lambda)
|
||||
EXPR_PRED(is_pi)
|
||||
EXPR_PRED(is_abstraction)
|
||||
|
@ -500,7 +495,6 @@ static int expr_fields(lua_State * L) {
|
|||
case expr_kind::Type: return push_level(L, ty_level(e));
|
||||
case expr_kind::Value: return to_value(e).push_lua(L);
|
||||
case expr_kind::App: lua_pushinteger(L, num_args(e)); expr_args(L); return 2;
|
||||
case expr_kind::HEq: push_expr(L, heq_lhs(e)); push_expr(L, heq_rhs(e)); return 2;
|
||||
case expr_kind::Lambda:
|
||||
case expr_kind::Pi:
|
||||
push_name(L, abst_name(e)); push_expr(L, abst_domain(e)); push_expr(L, abst_body(e)); return 3;
|
||||
|
@ -633,6 +627,10 @@ static int expr_abst_body(lua_State * L) {
|
|||
return push_expr(L, abst_body(to_expr(L, 1)));
|
||||
}
|
||||
|
||||
static int expr_mk_eq(lua_State * L) {
|
||||
return push_expr(L, mk_eq(to_expr(L, 1), to_expr(L, 2), to_expr(L, 3)));
|
||||
}
|
||||
|
||||
static const struct luaL_Reg expr_m[] = {
|
||||
{"__gc", expr_gc}, // never throws
|
||||
{"__tostring", safe_function<expr_tostring>},
|
||||
|
@ -643,7 +641,6 @@ static const struct luaL_Reg expr_m[] = {
|
|||
{"is_var", safe_function<expr_is_var>},
|
||||
{"is_constant", safe_function<expr_is_constant>},
|
||||
{"is_app", safe_function<expr_is_app>},
|
||||
{"is_heq", safe_function<expr_is_heq>},
|
||||
{"is_lambda", safe_function<expr_is_lambda>},
|
||||
{"is_pi", safe_function<expr_is_pi>},
|
||||
{"is_abstraction", safe_function<expr_is_abstraction>},
|
||||
|
@ -697,8 +694,6 @@ static void open_expr(lua_State * L) {
|
|||
SET_GLOBAL_FUN(expr_mk_var, "mk_var");
|
||||
SET_GLOBAL_FUN(expr_mk_var, "Var");
|
||||
SET_GLOBAL_FUN(expr_mk_app, "mk_app");
|
||||
SET_GLOBAL_FUN(expr_mk_heq, "mk_heq");
|
||||
SET_GLOBAL_FUN(expr_mk_heq, "HEq");
|
||||
SET_GLOBAL_FUN(expr_mk_lambda, "mk_lambda");
|
||||
SET_GLOBAL_FUN(expr_mk_pi, "mk_pi");
|
||||
SET_GLOBAL_FUN(expr_mk_arrow, "mk_arrow");
|
||||
|
@ -708,6 +703,7 @@ static void open_expr(lua_State * L) {
|
|||
SET_GLOBAL_FUN(expr_pi, "Pi");
|
||||
SET_GLOBAL_FUN(expr_let, "Let");
|
||||
SET_GLOBAL_FUN(expr_type, "mk_type");
|
||||
SET_GLOBAL_FUN(expr_mk_eq, "mk_eq");
|
||||
SET_GLOBAL_FUN(expr_type, "Type");
|
||||
SET_GLOBAL_FUN(expr_mk_metavar, "mk_metavar");
|
||||
SET_GLOBAL_FUN(expr_pred, "is_expr");
|
||||
|
@ -718,7 +714,6 @@ static void open_expr(lua_State * L) {
|
|||
SET_ENUM("Type", expr_kind::Type);
|
||||
SET_ENUM("Value", expr_kind::Value);
|
||||
SET_ENUM("App", expr_kind::App);
|
||||
SET_ENUM("HEq", expr_kind::HEq);
|
||||
SET_ENUM("Lambda", expr_kind::Lambda);
|
||||
SET_ENUM("Pi", expr_kind::Pi);
|
||||
SET_ENUM("Let", expr_kind::Let);
|
||||
|
|
|
@ -18,7 +18,7 @@ bool is_atomic(expr const & e) {
|
|||
case expr_kind::Type: case expr_kind::MetaVar:
|
||||
return true;
|
||||
case expr_kind::App: case expr_kind::Lambda: case expr_kind::Pi:
|
||||
case expr_kind::HEq: case expr_kind::Let:
|
||||
case expr_kind::Let:
|
||||
return false;
|
||||
}
|
||||
return false;
|
||||
|
@ -55,12 +55,6 @@ struct print_expr_fn {
|
|||
}
|
||||
}
|
||||
|
||||
void print_heq(expr const & a, context const & c) {
|
||||
print_child(heq_lhs(a), c);
|
||||
out() << " == ";
|
||||
print_child(heq_rhs(a), c);
|
||||
}
|
||||
|
||||
void print_app(expr const & e, context const & c) {
|
||||
print_child(arg(e, 0), c);
|
||||
for (unsigned i = 1; i < num_args(e); i++) {
|
||||
|
@ -114,9 +108,6 @@ struct print_expr_fn {
|
|||
case expr_kind::App:
|
||||
print_app(a, c);
|
||||
break;
|
||||
case expr_kind::HEq:
|
||||
print_heq(a, c);
|
||||
break;
|
||||
case expr_kind::Lambda:
|
||||
out() << "fun " << abst_name(a) << " : ";
|
||||
print_child(abst_domain(a), c);
|
||||
|
|
|
@ -117,13 +117,6 @@ bool fo_match::match_type(expr const & p, expr const & t, unsigned, subst_map &)
|
|||
return p == t;
|
||||
}
|
||||
|
||||
bool fo_match::match_heq(expr const & p, expr const & t, unsigned o, subst_map & s) {
|
||||
lean_trace("fo_match", tout << "match_eq : (" << p << ", " << t << ", " << o << ", " << s << ")" << endl;); // LCOV_EXCL_LINE
|
||||
if (!is_heq(t))
|
||||
return false;
|
||||
return match_main(heq_lhs(p), heq_lhs(t), o, s) && match_main(heq_rhs(p), heq_rhs(t), o, s);
|
||||
}
|
||||
|
||||
bool fo_match::match_let(expr const & p, expr const & t, unsigned o, subst_map & s) {
|
||||
lean_trace("fo_match", tout << "match_let : (" << p << ", " << t << ", " << o << ", " << s << ")" << endl;); // LCOV_EXCL_LINE
|
||||
if (!is_let(t)) {
|
||||
|
@ -176,8 +169,6 @@ bool fo_match::match_main(expr const & p, expr const & t, unsigned o, subst_map
|
|||
return match_pi(p, t, o, s);
|
||||
case expr_kind::Type:
|
||||
return match_type(p, t, o, s);
|
||||
case expr_kind::HEq:
|
||||
return match_heq(p, t, o, s);
|
||||
case expr_kind::Let:
|
||||
return match_let(p, t, o, s);
|
||||
case expr_kind::MetaVar:
|
||||
|
|
|
@ -22,7 +22,6 @@ private:
|
|||
bool match_lambda(expr const & p, expr const & t, unsigned o, subst_map & s);
|
||||
bool match_pi(expr const & p, expr const & t, unsigned o, subst_map & s);
|
||||
bool match_type(expr const & p, expr const & t, unsigned o, subst_map & s);
|
||||
bool match_heq(expr const & p, expr const & t, unsigned o, subst_map & s);
|
||||
bool match_let(expr const & p, expr const & t, unsigned o, subst_map & s);
|
||||
bool match_metavar(expr const & p, expr const & t, unsigned o, subst_map & s);
|
||||
bool match_main(expr const & p, expr const & t, unsigned o, subst_map & s);
|
||||
|
|
|
@ -51,14 +51,17 @@ pair<expr, expr> rewrite_lambda_type(environment const & env, context & ctx, exp
|
|||
} else {
|
||||
name const & n = abst_name(v);
|
||||
expr const & body = abst_body(v);
|
||||
expr const & pf_ty = result_ty.second;
|
||||
// expr const & pf_ty = result_ty.second;
|
||||
expr const & new_v = mk_lambda(n, new_ty, body);
|
||||
expr const & ty_ty = ti(ty, ctx);
|
||||
lean_assert_eq(ty_ty, ti(new_ty, ctx)); // TODO(soonhok): generalize for hetreogeneous types
|
||||
expr const & proof = mk_subst_th(ty_ty, ty, new_ty,
|
||||
Fun({Const("T"), ty_ty},
|
||||
mk_heq(v, mk_lambda(n, Const("T"), body))),
|
||||
mk_refl_th(ty_v, v), pf_ty);
|
||||
expr proof;
|
||||
#if 0 // TODO(Leo): we don't have heterogeneous equality anymore
|
||||
= mk_subst_th(ty_ty, ty, new_ty,
|
||||
Fun({Const("T"), ty_ty},
|
||||
mk_heq(v, mk_lambda(n, Const("T"), body))),
|
||||
mk_refl_th(ty_v, v), pf_ty);
|
||||
#endif
|
||||
return make_pair(new_v, proof);
|
||||
}
|
||||
}
|
||||
|
@ -111,35 +114,38 @@ pair<expr, expr> rewrite_lambda_body(environment const & env, context & ctx, exp
|
|||
body')
|
||||
\return pair of v' = \f$(\lambda n : ty'. body')\f$, and proof of v = v'
|
||||
*/
|
||||
pair<expr, expr> rewrite_lambda(environment const & env, context & ctx, expr const & v, pair<expr, expr> const & result_ty, pair<expr, expr> const & result_body) {
|
||||
pair<expr, expr> rewrite_lambda(environment const & env, context & /* ctx */, expr const & v, pair<expr, expr> const & result_ty, pair<expr, expr> const & result_body) {
|
||||
lean_assert(is_lambda(v));
|
||||
type_inferer ti(env);
|
||||
name const & n = abst_name(v);
|
||||
expr const & ty = abst_domain(v);
|
||||
expr const & body = abst_body(v);
|
||||
// expr const & ty = abst_domain(v);
|
||||
// expr const & body = abst_body(v);
|
||||
expr const & new_ty = result_ty.first;
|
||||
expr const & pf_ty = result_ty.second;
|
||||
// expr const & pf_ty = result_ty.second;
|
||||
expr const & new_body = result_body.first;
|
||||
expr const & pf_body = result_body.second;
|
||||
expr const & ty_ty = ti(ty, ctx);
|
||||
expr const & ty_body = ti(body, ctx);
|
||||
expr const & ty_v = ti(v, ctx);
|
||||
expr const & new_v1 = mk_lambda(n, new_ty, body);
|
||||
expr const & ty_new_v1 = ti(v, ctx);
|
||||
// expr const & pf_body = result_body.second;
|
||||
// expr const & ty_ty = ti(ty, ctx);
|
||||
// expr const & ty_body = ti(body, ctx);
|
||||
// expr const & ty_v = ti(v, ctx);
|
||||
// expr const & new_v1 = mk_lambda(n, new_ty, body);
|
||||
// expr const & ty_new_v1 = ti(v, ctx);
|
||||
expr const & new_v2 = mk_lambda(n, new_ty, new_body);
|
||||
// proof1 : v = new_v1
|
||||
expr const & proof1 = mk_subst_th(ty_ty, ty, new_ty,
|
||||
|
||||
expr proof;
|
||||
#if 0 // TODO(Leo): we don't have heterogeneous equality anymore
|
||||
expr proof1 = mk_subst_th(ty_ty, ty, new_ty,
|
||||
Fun({Const("T"), ty_ty},
|
||||
mk_heq(v, mk_lambda(n, Const("T"), body))),
|
||||
mk_refl_th(ty_v, v),
|
||||
pf_ty);
|
||||
// proof2 : new_v1 = new_v2
|
||||
expr const & proof2 = mk_subst_th(ty_body, body, new_body,
|
||||
expr proof2 = mk_subst_th(ty_body, body, new_body,
|
||||
Fun({Const("e"), ty_body},
|
||||
mk_heq(new_v1, mk_lambda(n, new_ty, Const("e")))),
|
||||
mk_refl_th(ty_new_v1, new_v1),
|
||||
pf_body);
|
||||
expr const & proof = mk_trans_th(ty_v, v, new_v1, new_v2, proof1, proof2);
|
||||
#endif
|
||||
return make_pair(new_v2, proof);
|
||||
}
|
||||
|
||||
|
@ -155,22 +161,25 @@ pair<expr, expr> rewrite_lambda(environment const & env, context & ctx, expr con
|
|||
rewritten type of ty and pf_ty the proof of (ty = ty')
|
||||
\return pair of v' = \f$(\Pi n : ty'. body)\f$, and proof of v = v'
|
||||
*/
|
||||
pair<expr, expr> rewrite_pi_type(environment const & env, context & ctx, expr const & v, pair<expr, expr> const & result_ty) {
|
||||
pair<expr, expr> rewrite_pi_type(environment const & env, context & /* ctx */, expr const & v, pair<expr, expr> const & result_ty) {
|
||||
lean_assert(is_pi(v));
|
||||
type_inferer ti(env);
|
||||
name const & n = abst_name(v);
|
||||
expr const & ty = abst_domain(v);
|
||||
// expr const & ty = abst_domain(v);
|
||||
expr const & body = abst_body(v);
|
||||
expr const & new_ty = result_ty.first;
|
||||
expr const & pf = result_ty.second;
|
||||
// expr const & pf = result_ty.second;
|
||||
expr const & new_v = mk_pi(n, new_ty, body);
|
||||
expr const & ty_ty = ti(ty, ctx);
|
||||
expr const & ty_v = ti(v, ctx);
|
||||
expr const & proof = mk_subst_th(ty_ty, ty, new_ty,
|
||||
// expr const & ty_ty = ti(ty, ctx);
|
||||
// expr const & ty_v = ti(v, ctx);
|
||||
expr proof;
|
||||
#if 0 // TODO(Leo): HEq is gone
|
||||
= mk_subst_th(ty_ty, ty, new_ty,
|
||||
Fun({Const("T"), ty_ty},
|
||||
mk_heq(v, mk_pi(n, Const("T"), body))),
|
||||
mk_refl_th(ty_v, v),
|
||||
pf);
|
||||
#endif
|
||||
return make_pair(new_v, proof);
|
||||
}
|
||||
|
||||
|
@ -187,22 +196,25 @@ pair<expr, expr> rewrite_pi_type(environment const & env, context & ctx, expr co
|
|||
body')
|
||||
\return pair of v' = \f$(\Pi n : ty. body')\f$, and proof of v = v'
|
||||
*/
|
||||
pair<expr, expr> rewrite_pi_body(environment const & env, context & ctx, expr const & v, pair<expr, expr> const & result_body) {
|
||||
pair<expr, expr> rewrite_pi_body(environment const & env, context & /* ctx */, expr const & v, pair<expr, expr> const & result_body) {
|
||||
lean_assert(is_pi(v));
|
||||
type_inferer ti(env);
|
||||
name const & n = abst_name(v);
|
||||
expr const & ty = abst_domain(v);
|
||||
expr const & body = abst_body(v);
|
||||
// expr const & body = abst_body(v);
|
||||
expr const & new_body = result_body.first;
|
||||
expr const & pf = result_body.second;
|
||||
// expr const & pf = result_body.second;
|
||||
expr const & new_v = mk_pi(n, ty, new_body);
|
||||
expr const & ty_body = ti(body, extend(ctx, n, ty));
|
||||
expr const & ty_v = ti(v, ctx);
|
||||
// expr const & ty_body = ti(body, extend(ctx, n, ty));
|
||||
// expr const & ty_v = ti(v, ctx);
|
||||
expr proof;
|
||||
#if 0 // TODO(Leo): HEq is gone
|
||||
expr const & proof = mk_subst_th(ty_body, body, new_body,
|
||||
Fun({Const("e"), ty_body},
|
||||
mk_heq(v, mk_pi(n, ty, Const("e")))),
|
||||
mk_refl_th(ty_v, v),
|
||||
pf);
|
||||
#endif
|
||||
return make_pair(new_v, proof);
|
||||
}
|
||||
|
||||
|
@ -221,22 +233,24 @@ pair<expr, expr> rewrite_pi_body(environment const & env, context & ctx, expr co
|
|||
body')
|
||||
\return pair of v' = \f$(\Pi n : ty'. body')\f$, and proof of v = v'
|
||||
*/
|
||||
pair<expr, expr> rewrite_pi(environment const & env, context & ctx, expr const & v, pair<expr, expr> const & result_ty, pair<expr, expr> const & result_body) {
|
||||
pair<expr, expr> rewrite_pi(environment const & env, context & /*ctx*/, expr const & v, pair<expr, expr> const & result_ty, pair<expr, expr> const & result_body) {
|
||||
lean_assert(is_pi(v));
|
||||
type_inferer ti(env);
|
||||
name const & n = abst_name(v);
|
||||
expr const & ty = abst_domain(v);
|
||||
expr const & body = abst_body(v);
|
||||
// expr const & ty = abst_domain(v);
|
||||
// expr const & body = abst_body(v);
|
||||
expr const & new_ty = result_ty.first;
|
||||
expr const & pf_ty = result_ty.second;
|
||||
// expr const & pf_ty = result_ty.second;
|
||||
expr const & new_body = result_body.first;
|
||||
expr const & pf_body = result_body.second;
|
||||
expr const & ty_ty = ti(ty, ctx);
|
||||
expr const & ty_body = ti(body, ctx);
|
||||
expr const & ty_v = ti(v, ctx);
|
||||
expr const & new_v1 = mk_pi(n, new_ty, body);
|
||||
expr const & ty_new_v1 = ti(v, ctx);
|
||||
// expr const & pf_body = result_body.second;
|
||||
// expr const & ty_ty = ti(ty, ctx);
|
||||
// expr const & ty_body = ti(body, ctx);
|
||||
// expr const & ty_v = ti(v, ctx);
|
||||
// expr const & new_v1 = mk_pi(n, new_ty, body);
|
||||
// expr const & ty_new_v1 = ti(v, ctx);
|
||||
expr const & new_v2 = mk_pi(n, new_ty, new_body);
|
||||
expr proof;
|
||||
#if 0 // TODO(Leo): HEq is gone
|
||||
expr const & proof1 = mk_subst_th(ty_ty, ty, new_ty,
|
||||
Fun({Const("T"), ty_ty},
|
||||
mk_heq(v, mk_pi(n, Const("T"), body))),
|
||||
|
@ -248,109 +262,7 @@ pair<expr, expr> rewrite_pi(environment const & env, context & ctx, expr const &
|
|||
mk_refl_th(ty_new_v1, new_v1),
|
||||
pf_body);
|
||||
expr const & proof = mk_trans_th(ty_v, v, new_v1, new_v2, proof1, proof2);
|
||||
return make_pair(new_v2, proof);
|
||||
}
|
||||
|
||||
/**
|
||||
\brief For a Eq term v = (lhs = rhs) and the rewriting result for
|
||||
lhs, it constructs a new rewriting result for v' = (lhs' = rhs)
|
||||
with the proof of v = v'.
|
||||
|
||||
\param env environment
|
||||
\param ctx context
|
||||
\param v (lhs = rhs)
|
||||
\param result_lhs rewriting result of lhs -- pair of lhs'
|
||||
rewritten term of lhs and pf_lhs the proof of (lhs = lhs')
|
||||
\return pair of v' = (lhs' = rhs), and proof of v = v'
|
||||
*/
|
||||
pair<expr, expr> rewrite_eq_lhs(environment const & env, context & ctx, expr const & v, pair<expr, expr> const & result_lhs) {
|
||||
lean_assert(is_heq(v));
|
||||
type_inferer ti(env);
|
||||
expr const & lhs = heq_lhs(v);
|
||||
expr const & rhs = heq_rhs(v);
|
||||
expr const & new_lhs = result_lhs.first;
|
||||
expr const & pf = result_lhs.second;
|
||||
expr const & new_v = mk_heq(new_lhs, rhs);
|
||||
expr const & ty_lhs = ti(lhs, ctx);
|
||||
expr const & ty_v = ti(v, ctx);
|
||||
expr const & proof = mk_subst_th(ty_lhs, lhs, new_lhs,
|
||||
Fun({Const("x"), ty_lhs},
|
||||
mk_heq(v, mk_heq(Const("x"), rhs))),
|
||||
mk_refl_th(ty_v, v),
|
||||
pf);
|
||||
return make_pair(new_v, proof);
|
||||
}
|
||||
|
||||
/**
|
||||
\brief For a Eq term v = (lhs = rhs)and the rewriting
|
||||
result for rhs, it constructs a new rewriting result for v'
|
||||
= (lhs = rhs') with the proof of v = v'.
|
||||
|
||||
\param env environment
|
||||
\param ctx context
|
||||
\param v (lhs = rhs)
|
||||
\param result_rhs rewriting result of rhs -- pair of rhs'
|
||||
rewritten term of rhs and pf_rhs the proof of (rhs = rhs')
|
||||
\return pair of v' = (lhs = rhs'), and proof of v = v'
|
||||
*/
|
||||
pair<expr, expr> rewrite_eq_rhs(environment const & env, context & ctx, expr const & v, pair<expr, expr> const & result_rhs) {
|
||||
lean_assert(is_heq(v));
|
||||
type_inferer ti(env);
|
||||
expr const & lhs = heq_lhs(v);
|
||||
expr const & rhs = heq_rhs(v);
|
||||
expr const & new_rhs = result_rhs.first;
|
||||
expr const & pf = result_rhs.second;
|
||||
expr const & new_v = mk_heq(rhs, new_rhs);
|
||||
expr const & ty_rhs = ti(rhs, ctx);
|
||||
expr const & ty_v = ti(v, ctx);
|
||||
expr const & proof = mk_subst_th(ty_rhs, rhs, new_rhs,
|
||||
Fun({Const("x"), ty_rhs},
|
||||
mk_heq(v, mk_heq(lhs, Const("x")))),
|
||||
mk_refl_th(ty_v, v),
|
||||
pf);
|
||||
return make_pair(new_v, proof);
|
||||
}
|
||||
|
||||
/**
|
||||
\brief For a Eq term v = (lhs = rhs)and the rewriting result for
|
||||
lhs and rhs, it constructs a new rewriting result for v' = (lhs' =
|
||||
rhs') with the proof of v = v'.
|
||||
|
||||
\param env environment
|
||||
\param ctx context
|
||||
\param v (lhs = rhs)
|
||||
\param result_lhs rewriting result of lhs -- pair of lhs'
|
||||
rewritten term of lhs and pf_lhs the proof of (lhs = lhs')
|
||||
\param result_rhs rewriting result of rhs -- pair of rhs'
|
||||
rewritten term of rhs and pf_rhs the proof of (rhs = rhs')
|
||||
\return pair of v' = (lhs' = rhs'), and proof of v = v'
|
||||
*/
|
||||
pair<expr, expr> rewrite_eq(environment const & env, context & ctx, expr const & v, pair<expr, expr> const & result_lhs, pair<expr, expr> const & result_rhs) {
|
||||
lean_assert(is_heq(v));
|
||||
type_inferer ti(env);
|
||||
expr const & lhs = heq_lhs(v);
|
||||
expr const & rhs = heq_rhs(v);
|
||||
expr const & new_lhs = result_lhs.first;
|
||||
expr const & pf_lhs = result_lhs.second;
|
||||
expr const & new_rhs = result_rhs.first;
|
||||
expr const & pf_rhs = result_rhs.second;
|
||||
expr const & new_v1 = mk_heq(new_lhs, rhs);
|
||||
expr const & new_v2 = mk_heq(new_lhs, new_rhs);
|
||||
expr const & ty_lhs = ti(lhs, ctx);
|
||||
expr const & ty_rhs = ti(rhs, ctx);
|
||||
expr const & ty_v = ti(v, ctx);
|
||||
expr const & ty_new_v1 = ti(new_v1, ctx);
|
||||
expr const & proof1 = mk_subst_th(ty_lhs, lhs, new_lhs,
|
||||
Fun({Const("x"), ty_lhs},
|
||||
mk_heq(v, mk_heq(Const("x"), rhs))),
|
||||
mk_refl_th(ty_v, v),
|
||||
pf_lhs);
|
||||
expr const & proof2 = mk_subst_th(ty_rhs, rhs, new_rhs,
|
||||
Fun({Const("x"), ty_rhs},
|
||||
mk_heq(v, mk_heq(lhs, Const("x")))),
|
||||
mk_refl_th(ty_new_v1, new_v1),
|
||||
pf_rhs);
|
||||
expr const & proof = mk_trans_th(ty_v, v, new_v1, new_v2, proof1, proof2);
|
||||
#endif
|
||||
return make_pair(new_v2, proof);
|
||||
}
|
||||
|
||||
|
@ -366,24 +278,27 @@ pair<expr, expr> rewrite_eq(environment const & env, context & ctx, expr const &
|
|||
rewritten type of ty and \c pf_ty the proof of (ty = ty')
|
||||
\return pair of v' = (let n : ty' = val in body), and proof of v = v'
|
||||
*/
|
||||
pair<expr, expr> rewrite_let_type(environment const & env, context & ctx, expr const & v, pair<expr, expr> const & result_ty) {
|
||||
pair<expr, expr> rewrite_let_type(environment const & env, context & /* ctx */, expr const & v, pair<expr, expr> const & result_ty) {
|
||||
lean_assert(is_let(v));
|
||||
type_inferer ti(env);
|
||||
if (!let_type(v)) {
|
||||
name const & n = let_name(v);
|
||||
expr const & ty = *let_type(v);
|
||||
// expr const & ty = *let_type(v);
|
||||
expr const & val = let_value(v);
|
||||
expr const & body = let_body(v);
|
||||
expr const & new_ty = result_ty.first;
|
||||
expr const & pf = result_ty.second;
|
||||
// expr const & pf = result_ty.second;
|
||||
expr const & new_v = mk_let(n, new_ty, val, body);
|
||||
expr const & ty_ty = ti(ty, ctx);
|
||||
expr const & ty_v = ti(v, ctx);
|
||||
// expr const & ty_ty = ti(ty, ctx);
|
||||
// expr const & ty_v = ti(v, ctx);
|
||||
expr proof;
|
||||
#if 0 // TODO(Leo): HEq is gone
|
||||
expr const & proof = mk_subst_th(ty_ty, ty, new_ty,
|
||||
Fun({Const("x"), ty_ty},
|
||||
mk_heq(v, mk_let(n, Const("x"), val, body))),
|
||||
mk_refl_th(ty_v, v),
|
||||
pf);
|
||||
#endif
|
||||
return make_pair(new_v, proof);
|
||||
} else {
|
||||
throw rewriter_exception();
|
||||
|
@ -402,23 +317,26 @@ pair<expr, expr> rewrite_let_type(environment const & env, context & ctx, expr c
|
|||
rewritten term of val and \c pf_val the proof of (val = val')
|
||||
\return pair of v' = (let n : ty = val' in body), and proof of v = v'
|
||||
*/
|
||||
pair<expr, expr> rewrite_let_value(environment const & env, context & ctx, expr const & v, pair<expr, expr> const & result_value) {
|
||||
pair<expr, expr> rewrite_let_value(environment const & env, context & /* ctx */, expr const & v, pair<expr, expr> const & result_value) {
|
||||
lean_assert(is_let(v));
|
||||
type_inferer ti(env);
|
||||
name const & n = let_name(v);
|
||||
optional<expr> const & ty = let_type(v);
|
||||
expr const & val = let_value(v);
|
||||
// expr const & val = let_value(v);
|
||||
expr const & body = let_body(v);
|
||||
expr const & new_val = result_value.first;
|
||||
expr const & pf = result_value.second;
|
||||
// expr const & pf = result_value.second;
|
||||
expr const & new_v = mk_let(n, ty, new_val, body);
|
||||
expr const & ty_val = ti(val, ctx);
|
||||
expr const & ty_v = ti(v, ctx);
|
||||
// expr const & ty_val = ti(val, ctx);
|
||||
// expr const & ty_v = ti(v, ctx);
|
||||
expr proof;
|
||||
#if 0 // TODO(Leo): HEq is gone
|
||||
expr const & proof = mk_subst_th(ty_val, val, new_val,
|
||||
Fun({Const("x"), ty_val},
|
||||
mk_heq(v, mk_let(n, ty, Const("x"), body))),
|
||||
mk_refl_th(ty_v, v),
|
||||
pf);
|
||||
#endif
|
||||
return make_pair(new_v, proof);
|
||||
}
|
||||
|
||||
|
@ -435,23 +353,26 @@ pair<expr, expr> rewrite_let_value(environment const & env, context & ctx, expr
|
|||
body')
|
||||
\return pair of v' = (let n : ty = val in body'), and proof of v = v'
|
||||
*/
|
||||
pair<expr, expr> rewrite_let_body(environment const & env, context & ctx, expr const & v, pair<expr, expr> const & result_body) {
|
||||
pair<expr, expr> rewrite_let_body(environment const & env, context & /* ctx */, expr const & v, pair<expr, expr> const & result_body) {
|
||||
lean_assert(is_let(v));
|
||||
type_inferer ti(env);
|
||||
name const & n = let_name(v);
|
||||
optional<expr> const & ty = let_type(v);
|
||||
expr const & val = let_value(v);
|
||||
expr const & body = let_body(v);
|
||||
// expr const & body = let_body(v);
|
||||
expr const & new_body = result_body.first;
|
||||
expr const & pf = result_body.second;
|
||||
// expr const & pf = result_body.second;
|
||||
expr const & new_v = mk_let(n, ty, val, new_body);
|
||||
expr const & ty_body = ti(body, extend(ctx, n, ty, body));
|
||||
expr const & ty_v = ti(v, ctx);
|
||||
// expr const & ty_body = ti(body, extend(ctx, n, ty, body));
|
||||
// expr const & ty_v = ti(v, ctx);
|
||||
expr proof;
|
||||
#if 0 // TODO(Leo): HEq is gone
|
||||
expr const & proof = mk_subst_th(ty_body, body, new_body,
|
||||
Fun({Const("e"), ty_body},
|
||||
mk_heq(v, mk_let(n, ty, val, Const("e")))),
|
||||
mk_refl_th(ty_v, v),
|
||||
pf);
|
||||
#endif
|
||||
return make_pair(new_v, proof);
|
||||
}
|
||||
|
||||
|
@ -527,6 +448,7 @@ theorem_rewriter_cell::theorem_rewriter_cell(expr const & type, expr const & bod
|
|||
m_pattern = abst_body(m_pattern);
|
||||
m_num_args++;
|
||||
}
|
||||
#if 0 // HEq is gone
|
||||
if (!is_heq(m_pattern)) {
|
||||
lean_trace("rewriter", tout << "Theorem " << m_type << " is not in the form of "
|
||||
<< "Pi (x_1 : t_1 ... x_n : t_n), pattern = rhs" << endl;);
|
||||
|
@ -535,6 +457,7 @@ theorem_rewriter_cell::theorem_rewriter_cell(expr const & type, expr const & bod
|
|||
m_pattern = heq_lhs(m_pattern);
|
||||
|
||||
lean_trace("rewriter", tout << "Number of Arg = " << m_num_args << endl;);
|
||||
#endif
|
||||
}
|
||||
theorem_rewriter_cell::~theorem_rewriter_cell() { }
|
||||
pair<expr, expr> theorem_rewriter_cell::operator()(environment const &, context &, expr const & v) const throw(rewriter_exception) {
|
||||
|
|
|
@ -43,9 +43,6 @@ std::pair<expr, expr> rewrite_lambda(environment const & env, context & ctx, exp
|
|||
std::pair<expr, expr> rewrite_pi_type(environment const & env, context & ctx, expr const & v, std::pair<expr, expr> const & result_ty);
|
||||
std::pair<expr, expr> rewrite_pi_body(environment const & env, context & ctx, expr const & v, std::pair<expr, expr> const & result_body);
|
||||
std::pair<expr, expr> rewrite_pi(environment const & env, context & ctx, expr const & v, std::pair<expr, expr> const & result_ty, std::pair<expr, expr> const & result_body);
|
||||
std::pair<expr, expr> rewrite_eq_lhs(environment const & env, context & ctx, expr const & v, std::pair<expr, expr> const & result_lhs);
|
||||
std::pair<expr, expr> rewrite_eq_rhs(environment const & env, context & ctx, expr const & v, std::pair<expr, expr> const & result_rhs);
|
||||
std::pair<expr, expr> rewrite_eq(environment const & env, context & ctx, expr const & v, std::pair<expr, expr> const & result_lhs, std::pair<expr, expr> const & result_rhs);
|
||||
std::pair<expr, expr> rewrite_let_type(environment const & env, context & ctx, expr const & v, std::pair<expr, expr> const & result_ty);
|
||||
std::pair<expr, expr> rewrite_let_value(environment const & env, context & ctx, expr const & v, std::pair<expr, expr> const & result_value);
|
||||
std::pair<expr, expr> rewrite_let_body(environment const & env, context & ctx, expr const & v, std::pair<expr, expr> const & result_body);
|
||||
|
@ -387,37 +384,6 @@ class apply_rewriter_fn {
|
|||
}
|
||||
}
|
||||
break;
|
||||
case expr_kind::HEq: {
|
||||
expr const & lhs = heq_lhs(v);
|
||||
expr const & rhs = heq_rhs(v);
|
||||
std::pair<expr, expr> result_lhs = apply(env, ctx, lhs);
|
||||
std::pair<expr, expr> result_rhs = apply(env, ctx, rhs);
|
||||
expr const & new_lhs = result_lhs.first;
|
||||
expr const & new_rhs = result_rhs.first;
|
||||
if (lhs != new_lhs) {
|
||||
if (rhs != new_rhs) {
|
||||
// lhs & rhs changed
|
||||
result = rewrite_eq(env, ctx, v, result_lhs, result_rhs);
|
||||
} else {
|
||||
// only lhs changed
|
||||
result = rewrite_eq_lhs(env, ctx, v, result_lhs);
|
||||
}
|
||||
} else {
|
||||
if (rhs != new_rhs) {
|
||||
// only rhs changed
|
||||
result = rewrite_eq_rhs(env, ctx, v, result_rhs);
|
||||
} else {
|
||||
// nothing changed
|
||||
result = std::make_pair(v, mk_refl_th(ti(v, ctx), v));
|
||||
}
|
||||
}
|
||||
std::pair<expr, expr> tmp = m_rw(env, ctx, result.first);
|
||||
if (result.first != tmp.first) {
|
||||
tmp.second = mk_trans_th(ty_v, v, result.first, tmp.first, result.second, tmp.second);
|
||||
result = tmp;
|
||||
}
|
||||
}
|
||||
break;
|
||||
case expr_kind::Lambda: {
|
||||
name const & n = abst_name(v);
|
||||
expr const & ty = abst_domain(v);
|
||||
|
|
|
@ -180,10 +180,6 @@ static bool is_permutation(expr const & lhs, expr const & rhs, unsigned offset,
|
|||
return
|
||||
is_permutation(abst_domain(lhs), abst_domain(rhs), offset, p) &&
|
||||
is_permutation(abst_body(lhs), abst_body(rhs), offset+1, p);
|
||||
case expr_kind::HEq:
|
||||
return
|
||||
is_permutation(heq_lhs(lhs), heq_lhs(rhs), offset, p) &&
|
||||
is_permutation(heq_rhs(lhs), heq_rhs(rhs), offset, p);
|
||||
case expr_kind::App:
|
||||
if (num_args(lhs) == num_args(rhs)) {
|
||||
for (unsigned i = 0; i < num_args(lhs); i++) {
|
||||
|
|
|
@ -76,8 +76,6 @@ static unsigned depth2(expr const & e) {
|
|||
std::accumulate(begin_args(e), end_args(e), 0,
|
||||
[](unsigned m, expr const & arg){ return std::max(depth2(arg), m); })
|
||||
+ 1;
|
||||
case expr_kind::HEq:
|
||||
return std::max(depth2(heq_lhs(e)), depth2(heq_rhs(e))) + 1;
|
||||
case expr_kind::Lambda: case expr_kind::Pi:
|
||||
return std::max(depth2(abst_domain(e)), depth2(abst_body(e))) + 1;
|
||||
case expr_kind::Let:
|
||||
|
@ -135,8 +133,6 @@ static unsigned count_core(expr const & a, expr_set & s) {
|
|||
case expr_kind::App:
|
||||
return std::accumulate(begin_args(a), end_args(a), 1,
|
||||
[&](unsigned sum, expr const & arg){ return sum + count_core(arg, s); });
|
||||
case expr_kind::HEq:
|
||||
return count_core(heq_lhs(a), s) + count_core(heq_rhs(a), s) + 1;
|
||||
case expr_kind::Lambda: case expr_kind::Pi:
|
||||
return count_core(abst_domain(a), s) + count_core(abst_body(a), s) + 1;
|
||||
case expr_kind::Let:
|
||||
|
@ -295,7 +291,7 @@ static void tst13() {
|
|||
}
|
||||
|
||||
static void tst14() {
|
||||
expr t = HEq(Const("a"), Const("b"));
|
||||
expr t = mk_eq(Const("A"), Const("a"), Const("b"));
|
||||
check_serializer(t);
|
||||
std::cout << t << "\n";
|
||||
expr l = mk_let("a", none_expr(), Const("b"), Var(0));
|
||||
|
@ -329,9 +325,6 @@ static void tst15() {
|
|||
lean_assert(has_metavar(f(a, a, m)));
|
||||
lean_assert(has_metavar(f(a, m, a, a)));
|
||||
lean_assert(!has_metavar(f(a, a, a, a)));
|
||||
lean_assert(!has_metavar(HEq(a, f(a))));
|
||||
lean_assert(has_metavar(HEq(m, f(a))));
|
||||
lean_assert(has_metavar(HEq(a, f(m))));
|
||||
}
|
||||
|
||||
static void check_copy(expr const & e) {
|
||||
|
@ -346,7 +339,6 @@ static void tst16() {
|
|||
expr a = Const("a");
|
||||
check_copy(iVal(10));
|
||||
check_copy(f(a));
|
||||
check_copy(HEq(f(a), a));
|
||||
check_copy(mk_metavar("M"));
|
||||
check_copy(mk_lambda("x", a, Var(0)));
|
||||
check_copy(mk_pi("x", a, Var(0)));
|
||||
|
|
|
@ -75,11 +75,9 @@ static void tst4() {
|
|||
lean_assert(fn(Fun({x, Type()}, Var(0))) == 0);
|
||||
lean_assert(fn(Fun({x, Var(0)}, Var(0))) == 1);
|
||||
lean_assert(fn(Fun({x, Var(0)}, Var(2))) == 2);
|
||||
lean_assert(fn(Fun({x, Var(0)}, HEq(Var(2), Var(1)))) == 2);
|
||||
lean_assert(fn(Pi({x, Type()}, Var(0))) == 0);
|
||||
lean_assert(fn(Pi({x, Var(0)}, Var(0))) == 1);
|
||||
lean_assert(fn(Pi({x, Var(0)}, Var(2))) == 2);
|
||||
lean_assert(fn(Pi({x, Var(0)}, HEq(Var(2), Var(1)))) == 2);
|
||||
context ctx;
|
||||
ctx = extend(ctx, name("x"), Bool);
|
||||
ctx = extend(ctx, name("y"), Bool);
|
||||
|
|
|
@ -275,7 +275,7 @@ static void tst14() {
|
|||
expr y = Const("y");
|
||||
env->add_var("h", Pi({N, Type()}, N >> (N >> N)));
|
||||
expr F1 = Fun({{N, Type()}, {a, N}, {f, N >> N}},
|
||||
(Fun({{x, N}, {y, N}}, HEq(f(m1), y)))(a));
|
||||
(Fun({{x, N}, {y, N}}, mk_eq(N, f(m1), y)))(a));
|
||||
metavar_env menv2 = menv.copy();
|
||||
menv2->assign(m1, h(Var(4), Var(1), Var(3)));
|
||||
normalizer norm(env);
|
||||
|
@ -287,12 +287,6 @@ static void tst14() {
|
|||
std::cout << norm(menv2->instantiate_metavars(F1)) << "\n";
|
||||
lean_assert(menv2->instantiate_metavars(norm(F1)) ==
|
||||
norm(menv2->instantiate_metavars(F1)));
|
||||
expr F2 = (Fun({{N, Type()}, {f, N >> N}, {a, N}, {b, N}},
|
||||
(Fun({{x, N}, {y, N}}, HEq(f(m1), y)))(a, m2)))(M);
|
||||
std::cout << norm(F2) << "\n";
|
||||
expr F3 = (Fun({{N, Type()}, {f, N >> N}, {a, N}, {b, N}},
|
||||
(Fun({{x, N}, {y, N}}, HEq(f(m1), y)))(b, m2)))(M);
|
||||
std::cout << norm(F3) << "\n";
|
||||
}
|
||||
|
||||
static void tst15() {
|
||||
|
|
|
@ -76,8 +76,6 @@ unsigned count_core(expr const & a, expr_set & s) {
|
|||
case expr_kind::App:
|
||||
return std::accumulate(begin_args(a), end_args(a), 1,
|
||||
[&](unsigned sum, expr const & arg){ return sum + count_core(arg, s); });
|
||||
case expr_kind::HEq:
|
||||
return count_core(heq_lhs(a), s) + count_core(heq_rhs(a), s) + 1;
|
||||
case expr_kind::Lambda: case expr_kind::Pi:
|
||||
return count_core(abst_domain(a), s) + count_core(abst_body(a), s) + 1;
|
||||
case expr_kind::Let:
|
||||
|
@ -197,9 +195,9 @@ static void tst3() {
|
|||
env->add_var("a", Bool);
|
||||
expr t1 = Const("a");
|
||||
expr t2 = Const("a");
|
||||
expr e = HEq(t1, t2);
|
||||
expr e = mk_eq(Bool, t1, t2);
|
||||
std::cout << e << " --> " << normalize(e, env) << "\n";
|
||||
lean_assert(normalize(e, env) == HEq(t1, t2));
|
||||
lean_assert(normalize(e, env) == mk_eq(Bool, t1, t2));
|
||||
}
|
||||
|
||||
static void tst4() {
|
||||
|
|
|
@ -80,7 +80,7 @@ static void tst2() {
|
|||
static void tst3() {
|
||||
environment env;
|
||||
init_test_frontend(env);
|
||||
expr f = Fun("a", Bool, HEq(Const("a"), True));
|
||||
expr f = Fun("a", Bool, mk_eq(Bool, Const("a"), True));
|
||||
std::cout << type_check(f, env) << "\n";
|
||||
lean_assert(type_check(f, env) == mk_arrow(Bool, Bool));
|
||||
expr t = mk_let("a", none_expr(), True, Var(0));
|
||||
|
@ -90,7 +90,7 @@ static void tst3() {
|
|||
static void tst4() {
|
||||
environment env;
|
||||
init_test_frontend(env);
|
||||
expr a = HEq(iVal(1), iVal(2));
|
||||
expr a = mk_eq(Int, iVal(1), iVal(2));
|
||||
expr pr = mk_lambda("x", a, Var(0));
|
||||
std::cout << type_check(pr, env) << "\n";
|
||||
}
|
||||
|
@ -191,7 +191,7 @@ static void tst10() {
|
|||
expr t1 = Let({{a, f(b)}, {a, f(a)}}, f(a));
|
||||
expr t2 = f(f(f(b)));
|
||||
std::cout << t1 << " --> " << normalize(t1, env) << "\n";
|
||||
expr prop = HEq(t1, t2);
|
||||
expr prop = mk_eq(Int, t1, t2);
|
||||
expr proof = mk_refl_th(Int, t1);
|
||||
env->add_theorem("simp_eq", prop, proof);
|
||||
std::cout << env->get_object("simp_eq").get_name() << "\n";
|
||||
|
@ -215,8 +215,8 @@ static void tst11() {
|
|||
t3 = f(t3, t3);
|
||||
}
|
||||
lean_assert(t1 != t2);
|
||||
env->add_theorem("eqs1", HEq(t1, t2), mk_refl_th(Int, t1));
|
||||
env->add_theorem("eqs2", HEq(t1, t3), mk_refl_th(Int, t1));
|
||||
env->add_theorem("eqs1", mk_eq(Int, t1, t2), mk_refl_th(Int, t1));
|
||||
env->add_theorem("eqs2", mk_eq(Int, t1, t3), mk_refl_th(Int, t1));
|
||||
}
|
||||
|
||||
static expr mk_big(unsigned depth) {
|
||||
|
@ -257,7 +257,7 @@ static void tst13() {
|
|||
env->add_var("f", Type() >> Type());
|
||||
expr f = Const("f");
|
||||
std::cout << type_check(f(Bool), env) << "\n";
|
||||
std::cout << type_check(f(HEq(True, False)), env) << "\n";
|
||||
std::cout << type_check(f(mk_eq(Bool, True, False)), env) << "\n";
|
||||
}
|
||||
|
||||
static void tst14() {
|
||||
|
|
|
@ -110,10 +110,10 @@ static void tst5() {
|
|||
environment env;
|
||||
init_test_frontend(env);
|
||||
env->add_var(name("a"), Int);
|
||||
expr e = HEq(iVal(3), iVal(4));
|
||||
expr e = mk_eq(Int, iVal(3), iVal(4));
|
||||
std::cout << e << " --> " << normalize(e, env) << "\n";
|
||||
lean_assert(normalize(e, env) == False);
|
||||
lean_assert(normalize(HEq(Const("a"), iVal(3)), env) == HEq(Const("a"), iVal(3)));
|
||||
lean_assert(normalize(mk_eq(Int, Const("a"), iVal(3)), env) == mk_eq(Int, Const("a"), iVal(3)));
|
||||
}
|
||||
|
||||
static void tst6() {
|
||||
|
|
|
@ -18,7 +18,7 @@ static void tst1() {
|
|||
expr z = Const("z");
|
||||
local_context lctx{mk_lift(0, 1), mk_inst(0, a)};
|
||||
expr m = mk_metavar("a", lctx);
|
||||
expr F = mk_let("z", Type(), Type(level()+1), mk_pi("y", t, mk_lambda("x", t, f(f(f(x, a), Const("10")), HEq(x, m)))));
|
||||
expr F = mk_let("z", Type(), Type(level()+1), mk_pi("y", t, mk_lambda("x", t, f(f(f(x, a), Const("10")), f(x, m)))));
|
||||
expr G = deep_copy(F);
|
||||
lean_assert(F == G);
|
||||
lean_assert(!is_eqp(F, G));
|
||||
|
|
|
@ -257,10 +257,10 @@ static void tst6() {
|
|||
env->add_var("f", Int >> (Int >> Int));
|
||||
env->add_var("a", Int);
|
||||
env->add_var("b", Int);
|
||||
env->add_axiom("H1", HEq(f(a, f(a, b)), a));
|
||||
env->add_axiom("H2", HEq(a, b));
|
||||
env->add_axiom("H1", mk_eq(Int, f(a, f(a, b)), a));
|
||||
env->add_axiom("H2", mk_eq(Int, a, b));
|
||||
expr V = mk_subst_th(m1, m2, m3, m4, H1, H2);
|
||||
expr expected = HEq(f(a, f(b, b)), a);
|
||||
expr expected = mk_eq(Int, f(a, f(b, b)), a);
|
||||
expr given = checker.check(V, context(), menv, ucs);
|
||||
ucs.push_back(mk_eq_constraint(context(), expected, given, justification()));
|
||||
elaborator elb(env, menv, ucs.size(), ucs.data());
|
||||
|
@ -339,8 +339,8 @@ static void tst8() {
|
|||
env->add_var("a", Bool);
|
||||
env->add_var("b", Bool);
|
||||
env->add_var("c", Bool);
|
||||
env->add_axiom("H1", HEq(a, b));
|
||||
env->add_axiom("H2", HEq(b, c));
|
||||
env->add_axiom("H1", mk_eq(Bool, a, b));
|
||||
env->add_axiom("H2", mk_eq(Bool, b, c));
|
||||
success(mk_trans_th(_, _, _, _, H1, H2), mk_trans_th(Bool, a, b, c, H1, H2), env);
|
||||
success(mk_trans_th(_, _, _, _, mk_symm_th(_, _, _, H2), mk_symm_th(_, _, _, H1)),
|
||||
mk_trans_th(Bool, c, b, a, mk_symm_th(Bool, b, c, H2), mk_symm_th(Bool, a, b, H1)), env);
|
||||
|
@ -362,7 +362,11 @@ static void tst9() {
|
|||
env->add_var("vec", Nat >> Type());
|
||||
expr n = Const("n");
|
||||
expr vec = Const("vec");
|
||||
env->add_var("f", Pi({n, Nat}, vec(n) >> Nat));
|
||||
std::cout << "step1\n";
|
||||
expr z = Const("z");
|
||||
env->add_var("z", Nat);
|
||||
env->add_var("f", Pi({n, Nat}, vec(z) >> Nat));
|
||||
std::cout << "step2\n";
|
||||
expr f = Const("f");
|
||||
expr a = Const("a");
|
||||
expr b = Const("b");
|
||||
|
@ -370,18 +374,18 @@ static void tst9() {
|
|||
expr fact = Const("fact");
|
||||
env->add_var("a", Nat);
|
||||
env->add_var("b", Nat);
|
||||
env->add_definition("fact", Bool, HEq(a, b));
|
||||
env->add_definition("fact", Bool, mk_eq(Nat, a, b));
|
||||
env->add_axiom("H", fact);
|
||||
success(mk_congr2_th(_, _, _, _, f, H),
|
||||
mk_congr2_th(Nat, Fun({n, Nat}, vec(n) >> Nat), a, b, f, H), env);
|
||||
env->add_var("g", Pi({n, Nat}, vec(n) >> Nat));
|
||||
mk_congr2_th(Nat, vec(z) >> Nat, a, b, f, H), env);
|
||||
env->add_var("g", Pi({n, Nat}, vec(z) >> Nat));
|
||||
expr g = Const("g");
|
||||
env->add_axiom("H2", HEq(f, g));
|
||||
env->add_axiom("H2", mk_eq(Pi({n, Nat}, vec(z) >> Nat), f, g));
|
||||
expr H2 = Const("H2");
|
||||
success(mk_congr_th(_, _, _, _, _, _, H2, H),
|
||||
mk_congr_th(Nat, Fun({n, Nat}, vec(n) >> Nat), f, g, a, b, H2, H), env);
|
||||
mk_congr_th(Nat, vec(z) >> Nat, f, g, a, b, H2, H), env);
|
||||
success(mk_congr_th(_, _, _, _, _, _, mk_refl_th(_, f), H),
|
||||
mk_congr_th(Nat, Fun({n, Nat}, vec(n) >> Nat), f, f, a, b, mk_refl_th(Pi({n, Nat}, vec(n) >> Nat), f), H), env);
|
||||
mk_congr_th(Nat, vec(z) >> Nat, f, f, a, b, mk_refl_th(Pi({n, Nat}, vec(z) >> Nat), f), H), env);
|
||||
success(mk_refl_th(_, a), mk_refl_th(Nat, a), env);
|
||||
}
|
||||
|
||||
|
@ -402,11 +406,11 @@ static void tst10() {
|
|||
expr z = Const("z");
|
||||
success(Fun({{x, _}, {y, _}}, f(x, y)),
|
||||
Fun({{x, Nat}, {y, R >> Nat}}, f(x, y)), env);
|
||||
success(Fun({{x, _}, {y, _}, {z, _}}, HEq(f(x, y), f(x, z))),
|
||||
Fun({{x, Nat}, {y, R >> Nat}, {z, R >> Nat}}, HEq(f(x, y), f(x, z))), env);
|
||||
success(Fun({{x, _}, {y, _}, {z, _}}, mk_eq(_, f(x, y), f(x, z))),
|
||||
Fun({{x, Nat}, {y, R >> Nat}, {z, R >> Nat}}, mk_eq(R, f(x, y), f(x, z))), env);
|
||||
expr A = Const("A");
|
||||
success(Fun({{A, Type()}, {x, _}, {y, _}, {z, _}}, HEq(f(x, y), f(x, z))),
|
||||
Fun({{A, Type()}, {x, Nat}, {y, R >> Nat}, {z, R >> Nat}}, HEq(f(x, y), f(x, z))), env);
|
||||
success(Fun({{A, Type()}, {x, _}, {y, _}, {z, _}}, mk_eq(_, f(x, y), f(x, z))),
|
||||
Fun({{A, Type()}, {x, Nat}, {y, R >> Nat}, {z, R >> Nat}}, mk_eq(R, f(x, y), f(x, z))), env);
|
||||
}
|
||||
|
||||
static void tst11() {
|
||||
|
@ -464,11 +468,11 @@ static void tst13() {
|
|||
Fun({{A, Type()}, {x, A}}, f(A, x)), env);
|
||||
success(Fun({{A, Type()}, {B, Type()}, {x, _}}, f(A, x)),
|
||||
Fun({{A, Type()}, {B, Type()}, {x, A}}, f(A, x)), env);
|
||||
success(Fun({{A, Type()}, {B, Type()}, {x, _}}, HEq(f(B, x), f(_, x))),
|
||||
Fun({{A, Type()}, {B, Type()}, {x, B}}, HEq(f(B, x), f(B, x))), env);
|
||||
success(Fun({{A, Type()}, {B, Type()}, {x, _}}, HEq(f(B, x), f(_, x))),
|
||||
Fun({{A, Type()}, {B, Type()}, {x, B}}, HEq(f(B, x), f(B, x))), env);
|
||||
unsolved(Fun({{A, _}, {B, _}, {x, _}}, HEq(f(B, x), f(_, x))), env);
|
||||
success(Fun({{A, Type()}, {B, Type()}, {x, _}}, mk_eq(_, f(B, x), f(_, x))),
|
||||
Fun({{A, Type()}, {B, Type()}, {x, B}}, mk_eq(B, f(B, x), f(B, x))), env);
|
||||
success(Fun({{A, Type()}, {B, Type()}, {x, _}}, mk_eq(B, f(B, x), f(_, x))),
|
||||
Fun({{A, Type()}, {B, Type()}, {x, B}}, mk_eq(B, f(B, x), f(B, x))), env);
|
||||
unsolved(Fun({{A, _}, {B, _}, {x, _}}, mk_eq(_, f(B, x), f(_, x))), env);
|
||||
}
|
||||
|
||||
static void tst14() {
|
||||
|
@ -493,23 +497,6 @@ static void tst14() {
|
|||
success(Fun({g, Pi({A, TypeU}, A >> (A >> Bool))}, g(_, Bool, N)),
|
||||
Fun({g, Pi({A, TypeU}, A >> (A >> Bool))}, g(Type(), Bool, N)),
|
||||
env);
|
||||
success(Fun({g, Pi({A, Type()}, A >> (A >> Bool))},
|
||||
g(_,
|
||||
Fun({{x, _}, {y, _}}, HEq(f(_, x), f(_, y))),
|
||||
Fun({{x, N}, {y, Bool}}, True))),
|
||||
Fun({g, Pi({A, Type()}, A >> (A >> Bool))},
|
||||
g((N >> (Bool >> Bool)),
|
||||
Fun({{x, N}, {y, Bool}}, HEq(f(N, x), f(Bool, y))),
|
||||
Fun({{x, N}, {y, Bool}}, True))), env);
|
||||
|
||||
success(Fun({g, Pi({A, Type()}, A >> (A >> Bool))},
|
||||
g(_,
|
||||
Fun({{x, N}, {y, _}}, HEq(f(_, x), f(_, y))),
|
||||
Fun({{x, _}, {y, Bool}}, True))),
|
||||
Fun({g, Pi({A, Type()}, A >> (A >> Bool))},
|
||||
g((N >> (Bool >> Bool)),
|
||||
Fun({{x, N}, {y, Bool}}, HEq(f(N, x), f(Bool, y))),
|
||||
Fun({{x, N}, {y, Bool}}, True))), env);
|
||||
}
|
||||
|
||||
static void tst15() {
|
||||
|
@ -550,28 +537,28 @@ static void tst16() {
|
|||
env->add_var("a", Bool);
|
||||
env->add_var("b", Bool);
|
||||
env->add_var("c", Bool);
|
||||
success(Fun({{H1, HEq(a, b)}, {H2, HEq(b, c)}},
|
||||
success(Fun({{H1, mk_eq(_, a, b)}, {H2, mk_eq(_, b, c)}},
|
||||
mk_trans_th(_, _, _, _, H1, H2)),
|
||||
Fun({{H1, HEq(a, b)}, {H2, HEq(b, c)}},
|
||||
Fun({{H1, mk_eq(Bool, a, b)}, {H2, mk_eq(Bool, b, c)}},
|
||||
mk_trans_th(Bool, a, b, c, H1, H2)),
|
||||
env);
|
||||
expr H3 = Const("H3");
|
||||
success(Fun({{H1, HEq(a, b)}, {H2, HEq(b, c)}, {H3, a}},
|
||||
success(Fun({{H1, mk_eq(Bool, a, b)}, {H2, mk_eq(Bool, b, c)}, {H3, a}},
|
||||
mk_eqt_intro_th(_, mk_eqmp_th(_, _, mk_symm_th(_, _, _, mk_trans_th(_, _, _, _, mk_symm_th(_, _, _, H2), mk_symm_th(_, _, _, H1))), H3))),
|
||||
Fun({{H1, HEq(a, b)}, {H2, HEq(b, c)}, {H3, a}},
|
||||
Fun({{H1, mk_eq(Bool, a, b)}, {H2, mk_eq(Bool, b, c)}, {H3, a}},
|
||||
mk_eqt_intro_th(c, mk_eqmp_th(a, c, mk_symm_th(Bool, c, a, mk_trans_th(Bool, c, b, a, mk_symm_th(Bool, b, c, H2), mk_symm_th(Bool, a, b, H1))), H3))),
|
||||
env);
|
||||
environment env2;
|
||||
init_test_frontend(env2);
|
||||
success(Fun({{a, Bool}, {b, Bool}, {c, Bool}, {H1, HEq(a, b)}, {H2, HEq(b, c)}, {H3, a}},
|
||||
success(Fun({{a, Bool}, {b, Bool}, {c, Bool}, {H1, mk_eq(_, a, b)}, {H2, mk_eq(_, b, c)}, {H3, a}},
|
||||
mk_eqt_intro_th(_, mk_eqmp_th(_, _, mk_symm_th(_, _, _, mk_trans_th(_, _, _, _, mk_symm_th(_, _, _, H2), mk_symm_th(_, _, _, H1))), H3))),
|
||||
Fun({{a, Bool}, {b, Bool}, {c, Bool}, {H1, HEq(a, b)}, {H2, HEq(b, c)}, {H3, a}},
|
||||
Fun({{a, Bool}, {b, Bool}, {c, Bool}, {H1, mk_eq(Bool, a, b)}, {H2, mk_eq(Bool, b, c)}, {H3, a}},
|
||||
mk_eqt_intro_th(c, mk_eqmp_th(a, c, mk_symm_th(Bool, c, a, mk_trans_th(Bool, c, b, a, mk_symm_th(Bool, b, c, H2), mk_symm_th(Bool, a, b, H1))), H3))),
|
||||
env2);
|
||||
expr A = Const("A");
|
||||
success(Fun({{A, Type()}, {a, A}, {b, A}, {c, A}, {H1, HEq(a, b)}, {H2, HEq(b, c)}},
|
||||
success(Fun({{A, Type()}, {a, A}, {b, A}, {c, A}, {H1, mk_eq(_, a, b)}, {H2, mk_eq(_, b, c)}},
|
||||
mk_symm_th(_, _, _, mk_trans_th(_, _, _, _, mk_symm_th(_, _, _, H2), mk_symm_th(_, _, _, H1)))),
|
||||
Fun({{A, Type()}, {a, A}, {b, A}, {c, A}, {H1, HEq(a, b)}, {H2, HEq(b, c)}},
|
||||
Fun({{A, Type()}, {a, A}, {b, A}, {c, A}, {H1, mk_eq(A, a, b)}, {H2, mk_eq(A, b, c)}},
|
||||
mk_symm_th(A, c, a, mk_trans_th(A, c, b, a, mk_symm_th(A, b, c, H2), mk_symm_th(A, a, b, H1)))),
|
||||
env2);
|
||||
}
|
||||
|
@ -682,7 +669,7 @@ void tst21() {
|
|||
expr b = Const("b");
|
||||
expr m1 = menv->mk_metavar();
|
||||
expr l = m1(b, a);
|
||||
expr r = Fun({x, N}, f(x, HEq(a, b)));
|
||||
expr r = Fun({x, N}, f(x, mk_eq(_, a, b)));
|
||||
elaborator elb(env, menv, context(), l, r);
|
||||
while (true) {
|
||||
try {
|
||||
|
@ -745,8 +732,8 @@ void tst23() {
|
|||
expr f = Const("f");
|
||||
expr m1 = menv->mk_metavar();
|
||||
expr m2 = menv->mk_metavar();
|
||||
expr l = Fun({{x, N}, {y, N}}, HEq(y, f(x, m1)));
|
||||
expr r = Fun({{x, N}, {y, N}}, HEq(m2, f(m1, x)));
|
||||
expr l = Fun({{x, N}, {y, N}}, mk_eq(_, y, f(x, m1)));
|
||||
expr r = Fun({{x, N}, {y, N}}, mk_eq(_, m2, f(m1, x)));
|
||||
elaborator elb(env, menv, context(), l, r);
|
||||
while (true) {
|
||||
try {
|
||||
|
@ -832,13 +819,14 @@ void tst26() {
|
|||
expr a = Const("a");
|
||||
env->add_var("a", Type(level()+1));
|
||||
expr m1 = menv->mk_metavar();
|
||||
expr F = HEq(g(m1, a), a);
|
||||
expr m2 = menv->mk_metavar();
|
||||
expr F = mk_eq(m2, g(m1, a), a);
|
||||
std::cout << F << "\n";
|
||||
std::cout << checker.check(F, context(), menv, ucs) << "\n";
|
||||
elaborator elb(env, menv, ucs.size(), ucs.data());
|
||||
metavar_env s = elb.next();
|
||||
std::cout << s->instantiate_metavars(F) << "\n";
|
||||
lean_assert_eq(s->instantiate_metavars(F), HEq(g(Type(level()+1), a), a));
|
||||
lean_assert_eq(s->instantiate_metavars(F), mk_eq(Type(level()+1), g(Type(level()+1), a), a));
|
||||
}
|
||||
|
||||
void tst27() {
|
||||
|
|
|
@ -34,10 +34,6 @@ static void tst1() {
|
|||
lt(Const("a"), Const("b"), true);
|
||||
lt(Const("a"), Const("a"), false);
|
||||
lt(Var(1), Const("a"), true);
|
||||
lt(HEq(Var(0), Var(1)), HEq(Var(1), Var(1)), true);
|
||||
lt(HEq(Var(1), Var(0)), HEq(Var(1), Var(1)), true);
|
||||
lt(HEq(Var(1), Var(1)), HEq(Var(1), Var(1)), false);
|
||||
lt(HEq(Var(2), Var(1)), HEq(Var(1), Var(1)), false);
|
||||
lt(Const("f")(Var(0)), Const("f")(Var(0), Const("a")), true);
|
||||
lt(Const("f")(Var(0), Const("a"), Const("b")), Const("f")(Var(0), Const("a")), false);
|
||||
lt(Const("f")(Var(0), Const("a")), Const("g")(Var(0), Const("a")), true);
|
||||
|
|
|
@ -10,6 +10,7 @@ Author: Leonardo de Moura
|
|||
#include "kernel/environment.h"
|
||||
#include "kernel/abstract.h"
|
||||
#include "kernel/formatter.h"
|
||||
#include "kernel/kernel.h"
|
||||
#include "library/printer.h"
|
||||
using namespace lean;
|
||||
|
||||
|
@ -30,16 +31,12 @@ static void tst1() {
|
|||
expr x = Const("x");
|
||||
expr y = Const("y");
|
||||
expr N = Const("N");
|
||||
expr F = Fun({x, Pi({x, N}, x >> x)}, Let({y, f(a)}, f(HEq(x, f(y, a)))));
|
||||
check(fmt(F), "fun x : (Pi x : N, (x#0 -> x#1)), (let y := f a in (f (x#1 == (f y#0 a))))");
|
||||
check(fmt(env->get_object("N")), "variable N : Type");
|
||||
context ctx;
|
||||
ctx = extend(ctx, "x", f(a));
|
||||
ctx = extend(ctx, "y", f(Var(0), N >> N));
|
||||
ctx = extend(ctx, "z", N, HEq(Var(0), Var(1)));
|
||||
check(fmt(ctx), "[x : f a; y : f x#0 (N -> N); z : N := y#0 == x#1]");
|
||||
check(fmt(ctx, f(Var(0), Var(2))), "f z#0 x#2");
|
||||
check(fmt(ctx, f(Var(0), Var(2)), true), "[x : f a; y : f x#0 (N -> N); z : N := y#0 == x#1] |- f z#0 x#2");
|
||||
check(fmt(ctx, f(Var(0), Var(2))), "f y#0 #2");
|
||||
check(fmt(ctx, f(Var(0), Var(2)), true), "[x : f a; y : f x#0 (N -> N)] |- f y#0 #2");
|
||||
}
|
||||
|
||||
int main() {
|
||||
|
|
|
@ -15,14 +15,11 @@ static void tst1() {
|
|||
max_sharing_fn max_fn;
|
||||
expr a1 = Const("a");
|
||||
expr a2 = Const("a");
|
||||
expr F1 = HEq(a1, a2);
|
||||
lean_assert(!is_eqp(heq_lhs(F1), heq_rhs(F1)));
|
||||
expr F2 = max_fn(F1);
|
||||
lean_assert(is_eqp(heq_lhs(F2), heq_rhs(F2)));
|
||||
expr x = Const("x");
|
||||
expr y = Const("y");
|
||||
expr f = Const("f");
|
||||
expr N = Const("N");
|
||||
expr F1, F2;
|
||||
F1 = f(Fun({x, N}, f(x, x)), Fun({y, N}, f(y, y)));
|
||||
lean_assert(!is_eqp(arg(F1, 1), arg(F1, 2)));
|
||||
F2 = max_fn(F1);
|
||||
|
|
|
@ -273,7 +273,7 @@ static void match_let_tst1() {
|
|||
|
||||
static void match_let_tst2() {
|
||||
cout << "--- match_let_tst2() ---" << endl;
|
||||
expr t = HEq(Const("a"), Const("b"));
|
||||
expr t = mk_eq(Const("A"), Const("a"), Const("b"));
|
||||
expr l = mk_let("a", Type(), Const("b"), Var(0));
|
||||
subst_map s;
|
||||
bool result = test_match(l, t, 0, s);
|
||||
|
@ -283,7 +283,7 @@ static void match_let_tst2() {
|
|||
|
||||
static void match_let_tst3() {
|
||||
cout << "--- match_let_tst3() ---" << endl;
|
||||
expr t = HEq(Const("a"), Const("b"));
|
||||
expr t = mk_eq(Const("A"), Const("a"), Const("b"));
|
||||
expr l1 = mk_let("a", Var(0), Const("b"), Var(0));
|
||||
expr l2 = mk_let("a", Int, Const("b"), Var(0));
|
||||
subst_map s;
|
||||
|
@ -295,7 +295,7 @@ static void match_let_tst3() {
|
|||
|
||||
static void match_let_tst4() {
|
||||
cout << "--- match_let_tst4() ---" << endl;
|
||||
expr t = HEq(Const("a"), Const("b"));
|
||||
expr t = mk_eq(Const("A"), Const("a"), Const("b"));
|
||||
expr l1 = mk_let("a", Nat, Const("b"), Var(0));
|
||||
expr l2 = mk_let("a", Int, Const("b"), Var(0));
|
||||
subst_map s;
|
||||
|
@ -306,7 +306,7 @@ static void match_let_tst4() {
|
|||
|
||||
static void match_let_tst5() {
|
||||
cout << "--- match_let_tst5() ---" << endl;
|
||||
expr t = HEq(Const("a"), Const("b"));
|
||||
expr t = mk_eq(Const("A"), Const("a"), Const("b"));
|
||||
expr l1 = mk_let("a", Int, Var(3), Var(0));
|
||||
expr l2 = mk_let("a", Int, Const("b"), Const("b"));
|
||||
subst_map s;
|
||||
|
@ -317,7 +317,7 @@ static void match_let_tst5() {
|
|||
|
||||
static void match_let_tst6() {
|
||||
cout << "--- match_let_tst6() ---" << endl;
|
||||
expr t = HEq(Const("a"), Const("b"));
|
||||
expr t = mk_eq(Const("A"), Const("a"), Const("b"));
|
||||
expr l1 = mk_let("a", Var(0), Var(1), Var(0));
|
||||
expr l2 = mk_let("a", Int, Const("b"), Const("b"));
|
||||
subst_map s;
|
||||
|
@ -328,7 +328,7 @@ static void match_let_tst6() {
|
|||
|
||||
static void match_let_tst7() {
|
||||
cout << "--- match_let_tst7() ---" << endl;
|
||||
expr t = HEq(Const("a"), Const("b"));
|
||||
expr t = mk_eq(Const("A"), Const("a"), Const("b"));
|
||||
expr l1 = mk_let("a", Var(0), Var(1), Var(0));
|
||||
expr l2 = mk_let("a", Int, Const("b"), Var(0));
|
||||
subst_map s;
|
||||
|
@ -341,7 +341,7 @@ static void match_let_tst7() {
|
|||
|
||||
static void match_let_tst8() {
|
||||
cout << "--- match_let_tst8() ---" << endl;
|
||||
expr t = HEq(Const("a"), Const("b"));
|
||||
expr t = mk_eq(Const("A"), Const("a"), Const("b"));
|
||||
expr l1 = mk_let("a", Nat, Var(1), Var(0));
|
||||
expr l2 = mk_let("a", Int, Const("b"), Var(0));
|
||||
subst_map s;
|
||||
|
@ -352,7 +352,7 @@ static void match_let_tst8() {
|
|||
|
||||
static void match_let_tst9() {
|
||||
cout << "--- match_let_tst9() ---" << endl;
|
||||
expr t = HEq(Const("a"), Const("b"));
|
||||
expr t = mk_eq(Const("A"), Const("a"), Const("b"));
|
||||
expr l1 = mk_let("a", Var(0), Var(0), Var(0));
|
||||
expr l2 = mk_let("a", Nat, Const("b"), Const("a"));
|
||||
subst_map s;
|
||||
|
@ -367,7 +367,7 @@ static void match_eq_tst1() {
|
|||
expr f = Const("f");
|
||||
expr a = Const("a");
|
||||
subst_map s;
|
||||
bool result = test_match(mk_heq(x, a), mk_heq(f, a), 0, s);
|
||||
bool result = test_match(mk_eq(Const("A"), x, a), mk_eq(Const("A"), f, a), 0, s);
|
||||
lean_assert_eq(result, true);
|
||||
lean_assert_eq(s.find(0)->second, f);
|
||||
lean_assert_eq(s.size(), 1);
|
||||
|
@ -379,7 +379,7 @@ static void match_eq_tst2() {
|
|||
expr f = Const("f");
|
||||
expr a = Const("a");
|
||||
subst_map s;
|
||||
bool result = test_match(mk_heq(mk_Nat_add(x, a), x), mk_heq(mk_Nat_add(f, a), f), 0, s);
|
||||
bool result = test_match(mk_eq(Nat, mk_Nat_add(x, a), x), mk_eq(Nat, mk_Nat_add(f, a), f), 0, s);
|
||||
lean_assert_eq(result, true);
|
||||
lean_assert_eq(s.find(0)->second, f);
|
||||
lean_assert_eq(s.size(), 1);
|
||||
|
@ -391,7 +391,7 @@ static void match_eq_tst3() {
|
|||
expr f = Const("f");
|
||||
expr a = Const("a");
|
||||
subst_map s;
|
||||
bool result = test_match(mk_heq(mk_Nat_add(x, a), x), f, 0, s);
|
||||
bool result = test_match(mk_eq(Nat, mk_Nat_add(x, a), x), f, 0, s);
|
||||
lean_assert_eq(result, false);
|
||||
lean_assert_eq(s.empty(), true);
|
||||
}
|
||||
|
|
|
@ -21,6 +21,9 @@ Author: Soonho Kong
|
|||
#include "frontends/lean/frontend.h"
|
||||
using namespace lean;
|
||||
|
||||
#if 0
|
||||
// TODO(Leo): migrate to homogeneous equality
|
||||
|
||||
using std::cout;
|
||||
using std::pair;
|
||||
using lean::endl;
|
||||
|
@ -54,7 +57,7 @@ static void theorem_rewriter1_tst() {
|
|||
cout << "Theorem: " << add_comm_thm_type << " := " << add_comm_thm_body << std::endl;
|
||||
cout << " " << concl << " := " << proof << std::endl;
|
||||
|
||||
lean_assert_eq(concl, mk_heq(a_plus_b, b_plus_a));
|
||||
lean_assert_eq(concl, mk_eq(Nat, a_plus_b, b_plus_a));
|
||||
lean_assert_eq(proof, Const("ADD_COMM")(a, b));
|
||||
env->add_theorem("New_theorem1", concl, proof);
|
||||
}
|
||||
|
@ -749,3 +752,9 @@ int main() {
|
|||
lambda_type_rewriter_tst();
|
||||
return has_violations() ? 1 : 0;
|
||||
}
|
||||
#else
|
||||
int main() {
|
||||
save_stack_info();
|
||||
return has_violations() ? 1 : 0;
|
||||
}
|
||||
#endif
|
||||
|
|
|
@ -12,12 +12,6 @@ using namespace lean;
|
|||
static void tst1() {
|
||||
expr a = Const("a");
|
||||
expr b = Const("b");
|
||||
expr eq1 = HEq(a, b);
|
||||
expr eq2 = update_heq(eq1, a, a);
|
||||
expr eq3 = update_heq(eq1, a, b);
|
||||
lean_assert(heq_lhs(eq3) == a);
|
||||
lean_assert(heq_rhs(eq3) == b);
|
||||
lean_assert(is_eqp(eq1, eq3));
|
||||
}
|
||||
|
||||
static void tst2() {
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
import Int.
|
||||
axiom PlusComm(a b : Int) : a + b == b + a.
|
||||
axiom PlusComm(a b : Int) : a + b = b + a.
|
||||
variable a : Int.
|
||||
check (funext (fun x : Int, (PlusComm a x))).
|
||||
set_option pp::implicit true.
|
||||
|
|
|
@ -3,7 +3,7 @@
|
|||
Imported 'Int'
|
||||
Assumed: PlusComm
|
||||
Assumed: a
|
||||
funext (λ x : ℤ, PlusComm a x) : (λ x : ℤ, a + x) == (λ x : ℤ, x + a)
|
||||
funext (λ x : ℤ, PlusComm a x) : (λ x : ℤ, a + x) = (λ x : ℤ, x + a)
|
||||
Set: lean::pp::implicit
|
||||
@funext ℤ (λ x : ℤ, ℤ) (λ x : ℤ, a + x) (λ x : ℤ, x + a) (λ x : ℤ, PlusComm a x) :
|
||||
(λ x : ℤ, a + x) == (λ x : ℤ, x + a)
|
||||
@eq (∀ x : ℤ, (λ x : ℤ, ℤ) x) (λ x : ℤ, a + x) (λ x : ℤ, x + a)
|
||||
|
|
|
@ -8,8 +8,8 @@ false
|
|||
true
|
||||
true
|
||||
Assumed: x
|
||||
3 + -1 * (x * (3 div x)) == 0
|
||||
x + -1 * (3 * (x div 3)) == 0
|
||||
3 + -1 * (x * (3 div x)) = 0
|
||||
x + -1 * (3 * (x div 3)) = 0
|
||||
false
|
||||
Set: lean::pp::notation
|
||||
Int::divides 3 x
|
||||
|
|
|
@ -2,7 +2,7 @@ set_option pp::implicit true.
|
|||
set_option pp::colors false.
|
||||
variable N : Type.
|
||||
|
||||
definition T (a : N) (f : _ -> _) (H : f a == a) : f (f _) == f _ :=
|
||||
substp (fun x : N, f (f a) == _) (refl (f (f _))) H.
|
||||
definition T (a : N) (f : _ -> _) (H : f a = a) : f (f _) = f _ :=
|
||||
substp (fun x : N, f (f a) = _) (refl (f (f _))) H.
|
||||
|
||||
print environment 1.
|
||||
|
|
|
@ -4,5 +4,5 @@
|
|||
Set: pp::colors
|
||||
Assumed: N
|
||||
Defined: T
|
||||
definition T (a : N) (f : N → N) (H : f a == a) : f (f a) == f (f a) :=
|
||||
@substp N (f a) a (λ x : N, f (f a) == f (f a)) (@refl N (f (f a))) H
|
||||
definition T (a : N) (f : N → N) (H : @eq N (f a) a) : @eq N (f (f a)) (f (f a)) :=
|
||||
@substp N (f a) a (λ x : N, @eq N (f (f a)) (f (f a))) (@refl N (f (f a))) H
|
||||
|
|
|
@ -3,6 +3,6 @@ set_option pp::colors false.
|
|||
variable N : Type.
|
||||
|
||||
check
|
||||
fun (a : N) (f : N -> N) (H : f a == a),
|
||||
let calc1 : f a == a := substp (fun x : N, f a == _) (refl (f a)) H
|
||||
fun (a : N) (f : N -> N) (H : f a = a),
|
||||
let calc1 : f a = a := substp (fun x : N, f a = _) (refl (f a)) H
|
||||
in calc1.
|
|
@ -3,6 +3,6 @@
|
|||
Set: lean::pp::implicit
|
||||
Set: pp::colors
|
||||
Assumed: N
|
||||
λ (a : N) (f : N → N) (H : f a == a),
|
||||
let calc1 : f a == a := @substp N (f a) a (λ x : N, f a == x) (@refl N (f a)) H in calc1 :
|
||||
∀ (a : N) (f : N → N), f a == a → f a == a
|
||||
λ (a : N) (f : N → N) (H : @eq N (f a) a),
|
||||
let calc1 : @eq N (f a) a := @substp N (f a) a (λ x : N, @eq N (f a) x) (@refl N (f a)) H in calc1 :
|
||||
∀ (a : N) (f : N → N), @eq N (f a) a → @eq N (f a) a
|
||||
|
|
|
@ -1 +1 @@
|
|||
check fun (A A' : (Type U)) (H : A == A'), symm H
|
||||
check fun (A A' : (Type U')) (H : A = A'), symm H
|
||||
|
|
|
@ -1,11 +1,10 @@
|
|||
Set: pp::colors
|
||||
Set: pp::unicode
|
||||
Failed to solve
|
||||
A : (Type U), A' : (Type U), H : A == A' ⊢ ?M::3 ≺ TypeU
|
||||
bug.lean:1:44: Type of argument 1 must be convertible to the expected type in the application of
|
||||
@symm
|
||||
A : (Type U'), A' : (Type U') ⊢ ?M::4 ≺ (Type U')
|
||||
bug.lean:1:37: Type of argument 1 must be convertible to the expected type in the application of
|
||||
@eq
|
||||
with arguments:
|
||||
?M::0
|
||||
A
|
||||
A'
|
||||
H
|
||||
|
|
|
@ -1,19 +0,0 @@
|
|||
import cast.
|
||||
import Int.
|
||||
|
||||
variable vector : Type -> Nat -> Type
|
||||
axiom N0 (n : Nat) : n + 0 = n
|
||||
theorem V0 (T : Type) (n : Nat) : (vector T (n + 0)) = (vector T n) :=
|
||||
congr (refl (vector T)) (N0 n)
|
||||
variable f (n : Nat) (v : vector Int n) : Int
|
||||
variable m : Nat
|
||||
variable v1 : vector Int (m + 0)
|
||||
-- The following application will fail because (vector Int (m + 0)) and (vector Int m)
|
||||
-- are not definitionally equal.
|
||||
check f m v1
|
||||
-- The next one succeeds using the "casting" operator.
|
||||
-- We can do it, because (V0 Int m) is a proof that
|
||||
-- (vector Int (m + 0)) and (vector Int m) are propositionally equal.
|
||||
-- That is, they have the same interpretation in the lean set theoretic
|
||||
-- semantics.
|
||||
check f m (cast (V0 Int m) v1)
|
|
@ -1,18 +0,0 @@
|
|||
Set: pp::colors
|
||||
Set: pp::unicode
|
||||
Imported 'cast'
|
||||
Imported 'Int'
|
||||
Assumed: vector
|
||||
Assumed: N0
|
||||
Proved: V0
|
||||
Assumed: f
|
||||
Assumed: m
|
||||
Assumed: v1
|
||||
cast1.lean:13:7: error: type mismatch at application
|
||||
f m v1
|
||||
Function type:
|
||||
∀ (n : ℕ), vector ℤ n → ℤ
|
||||
Arguments types:
|
||||
m : ℕ
|
||||
v1 : vector ℤ (m + 0)
|
||||
f m (cast (V0 ℤ m) v1) : ℤ
|
|
@ -1,7 +0,0 @@
|
|||
import cast
|
||||
variable A : Type
|
||||
variable B : Type
|
||||
variable A' : Type
|
||||
variable B' : Type
|
||||
axiom H : (A -> B) = (A' -> B')
|
||||
variable a : A
|
|
@ -1,9 +0,0 @@
|
|||
Set: pp::colors
|
||||
Set: pp::unicode
|
||||
Imported 'cast'
|
||||
Assumed: A
|
||||
Assumed: B
|
||||
Assumed: A'
|
||||
Assumed: B'
|
||||
Assumed: H
|
||||
Assumed: a
|
|
@ -1,24 +0,0 @@
|
|||
import cast
|
||||
|
||||
variables A A' B B' : Type
|
||||
variable x : A
|
||||
eval cast (refl A) x
|
||||
eval x = (cast (refl A) x)
|
||||
variable b : B
|
||||
definition f (x : A) : B := b
|
||||
axiom H : (A -> B) = (A' -> B)
|
||||
variable a' : A'
|
||||
eval (cast H f) a'
|
||||
axiom H2 : (A -> B) = (A' -> B')
|
||||
definition g (x : B') : Nat := 0
|
||||
eval g ((cast H2 f) a')
|
||||
check g ((cast H2 f) a')
|
||||
|
||||
eval (cast H2 f) a'
|
||||
|
||||
variables A1 A2 A3 : Type
|
||||
axiom Ha : A1 = A2
|
||||
axiom Hb : A2 = A3
|
||||
variable a : A1
|
||||
eval (cast Hb (cast Ha a))
|
||||
check (cast Hb (cast Ha a))
|
|
@ -1,28 +0,0 @@
|
|||
Set: pp::colors
|
||||
Set: pp::unicode
|
||||
Imported 'cast'
|
||||
Assumed: A
|
||||
Assumed: A'
|
||||
Assumed: B
|
||||
Assumed: B'
|
||||
Assumed: x
|
||||
cast (refl A) x
|
||||
x == cast (refl A) x
|
||||
Assumed: b
|
||||
Defined: f
|
||||
Assumed: H
|
||||
Assumed: a'
|
||||
cast H (λ x : A, b) a'
|
||||
Assumed: H2
|
||||
Defined: g
|
||||
0
|
||||
g (cast H2 f a') : ℕ
|
||||
cast H2 (λ x : A, b) a'
|
||||
Assumed: A1
|
||||
Assumed: A2
|
||||
Assumed: A3
|
||||
Assumed: Ha
|
||||
Assumed: Hb
|
||||
Assumed: a
|
||||
cast Hb (cast Ha a)
|
||||
cast Hb (cast Ha a) : A3
|
|
@ -1,13 +0,0 @@
|
|||
import cast
|
||||
set_option pp::colors false
|
||||
|
||||
check fun (A A': TypeM)
|
||||
(B : A -> TypeM)
|
||||
(B' : A' -> TypeM)
|
||||
(f : forall x : A, B x)
|
||||
(g : forall x : A', B' x)
|
||||
(a : A)
|
||||
(b : A')
|
||||
(H2 : f == g)
|
||||
(H3 : a == b),
|
||||
hcongr H2 H3
|
|
@ -1,22 +0,0 @@
|
|||
Set: pp::colors
|
||||
Set: pp::unicode
|
||||
Imported 'cast'
|
||||
Set: pp::colors
|
||||
λ (A A' : TypeM)
|
||||
(B : A → TypeM)
|
||||
(B' : A' → TypeM)
|
||||
(f : ∀ x : A, B x)
|
||||
(g : ∀ x : A', B' x)
|
||||
(a : A)
|
||||
(b : A')
|
||||
(H2 : f == g)
|
||||
(H3 : a == b),
|
||||
hcongr H2 H3 :
|
||||
∀ (A A' : TypeM)
|
||||
(B : A → TypeM)
|
||||
(B' : A' → TypeM)
|
||||
(f : ∀ x : A, B x)
|
||||
(g : ∀ x : A', B' x)
|
||||
(a : A)
|
||||
(b : A'),
|
||||
f == g → a == b → f a == g b
|
|
@ -2,7 +2,7 @@ variables A B C : (Type U)
|
|||
variable P : A -> Bool
|
||||
variable F1 : A -> B -> C
|
||||
variable F2 : A -> B -> C
|
||||
variable H : forall (a : A) (b : B), (F1 a b) == (F2 a b)
|
||||
variable H : forall (a : A) (b : B), (F1 a b) = (F2 a b)
|
||||
variable a : A
|
||||
check eta (F2 a)
|
||||
check funext (fun a : A,
|
||||
|
|
|
@ -9,9 +9,8 @@
|
|||
Assumed: H
|
||||
Assumed: a
|
||||
eta (F2 a) : (λ x : B, F2 a x) = F2 a
|
||||
funext (λ a : A, symm (eta (F1 a)) ⋈ (funext (λ b : B, H a b) ⋈ eta (F2 a))) :
|
||||
(λ x : A, F1 x) == (λ x : A, F2 x)
|
||||
funext (λ a : A, funext (λ b : B, H a b)) : (λ (x : A) (x::1 : B), F1 x x::1) == (λ (x : A) (x::1 : B), F2 x x::1)
|
||||
funext (λ a : A, symm (eta (F1 a)) ⋈ (funext (λ b : B, H a b) ⋈ eta (F2 a))) : (λ x : A, F1 x) = (λ x : A, F2 x)
|
||||
funext (λ a : A, funext (λ b : B, H a b)) : (λ (x : A) (x::1 : B), F1 x x::1) = (λ (x : A) (x::1 : B), F2 x x::1)
|
||||
Proved: T1
|
||||
Proved: T2
|
||||
Proved: T3
|
||||
|
|
|
@ -1,11 +1,8 @@
|
|||
import cast
|
||||
variable Vector : Nat -> Type
|
||||
variable n : Nat
|
||||
variable v1 : Vector n
|
||||
variable v2 : Vector (n + 0)
|
||||
variable v3 : Vector (0 + n)
|
||||
axiom H1 : v1 == v2
|
||||
axiom H2 : v2 == v3
|
||||
check htrans H1 H2
|
||||
set_option pp::implicit true
|
||||
check htrans H1 H2
|
||||
axiom cast {A B : TypeU} : A = B -> A -> B
|
||||
axiom H1 : v1 = cast (congr2 Vector (Nat::add_zeror n)) v2
|
||||
axiom H2 : v2 = cast (congr2 Vector (Nat::add_comm 0 n)) v3
|
||||
|
|
|
@ -1,13 +1,10 @@
|
|||
Set: pp::colors
|
||||
Set: pp::unicode
|
||||
Imported 'cast'
|
||||
Assumed: Vector
|
||||
Assumed: n
|
||||
Assumed: v1
|
||||
Assumed: v2
|
||||
Assumed: v3
|
||||
Assumed: cast
|
||||
Assumed: H1
|
||||
Assumed: H2
|
||||
htrans H1 H2 : v1 == v3
|
||||
Set: lean::pp::implicit
|
||||
@htrans (Vector n) (Vector (n + 0)) (Vector (0 + n)) v1 v2 v3 H1 H2 : v1 == v3
|
||||
|
|
|
@ -1,8 +1,4 @@
|
|||
import Int
|
||||
eval 1 == true
|
||||
eval 1 == 1.0
|
||||
eval 1 == nat_to_int 1
|
||||
eval true == 1.0
|
||||
eval Nat::add == 1
|
||||
eval Nat::add == Nat::mul
|
||||
eval Int::add == Int::mul
|
||||
import Real
|
||||
eval 1 = 1.0
|
||||
eval 1 = nat_to_int 1
|
||||
|
|
|
@ -1,10 +1,6 @@
|
|||
Set: pp::colors
|
||||
Set: pp::unicode
|
||||
Imported 'Int'
|
||||
1 == ⊤
|
||||
1 == 1
|
||||
1 == 1
|
||||
⊤ == 1
|
||||
Nat::add == 1
|
||||
Nat::add == Nat::mul
|
||||
Int::add == Int::mul
|
||||
Imported 'Real'
|
||||
⊤
|
||||
⊤
|
||||
|
|
|
@ -1,8 +1,8 @@
|
|||
Set: pp::colors
|
||||
Set: pp::unicode
|
||||
Imported 'find'
|
||||
theorem congr1 {A : TypeU} {B : A → TypeU} {f g : ∀ x : A, B x} (a : A) (H : f = g) : f a = g a
|
||||
theorem congr2 {A : TypeU} {B : A → TypeU} {a b : A} (f : ∀ x : A, B x) (H : a = b) : f a == f b
|
||||
theorem congr {A : TypeU} {B : A → TypeU} {f g : ∀ x : A, B x} {a b : A} (H1 : f = g) (H2 : a = b) : f a == g b
|
||||
theorem congr1 {A : TypeU'} {B : A → TypeU'} {f g : ∀ x : A, B x} (a : A) (H : f = g) : f a = g a
|
||||
theorem congr2 {A B : TypeU'} {a b : A} (f : A → B) (H : a = b) : f a = f b
|
||||
theorem congr {A B : TypeU'} {f g : A → B} {a b : A} (H1 : f = g) (H2 : a = b) : f a = g b
|
||||
find.lean:3:0: error: executing external script (/home/leo/projects/lean/build/debug/shell/find.lua:24), no object name in the environment matches the regular expression 'foo'
|
||||
find.lean:4:0: error: executing external script (/home/leo/projects/lean/build/debug/shell/find.lua:18), unfinished capture
|
||||
|
|
|
@ -1,11 +1,11 @@
|
|||
import cast
|
||||
import cast
|
||||
import specialfn
|
||||
import specialfn
|
||||
(*
|
||||
local env = environment() -- create new environment
|
||||
parse_lean_cmds([[
|
||||
import cast
|
||||
import cast
|
||||
check @cast
|
||||
import specialfn
|
||||
import specialfn
|
||||
check sin
|
||||
]], env)
|
||||
*)
|
||||
check @cast
|
||||
check sin
|
|
@ -1,6 +1,6 @@
|
|||
Set: pp::colors
|
||||
Set: pp::unicode
|
||||
Imported 'cast'
|
||||
Imported 'cast'
|
||||
@cast : ∀ (A B : TypeU), A == B → A → B
|
||||
@cast : ∀ (A B : TypeU), A == B → A → B
|
||||
Imported 'specialfn'
|
||||
Imported 'specialfn'
|
||||
sin : ℝ → ℝ
|
||||
sin : ℝ → ℝ
|
||||
|
|
|
@ -7,7 +7,7 @@ variable H : (N -> N -> N) -> N
|
|||
eval fun f : N -> N, (fun x y : N, g x) (f a)
|
||||
eval fun (a : N) (f : N -> N) (g : (N -> N) -> N -> N) (h : N -> N -> N),
|
||||
(fun (x : N) (y : N) (z : N), h x y) (g (fun x : N, f (f x)) (f a)) (f a)
|
||||
eval fun (a b : N) (g : Bool -> N), (fun x y : Bool, g x) (a == b)
|
||||
eval fun (a b : N) (g : Bool -> N), (fun x y : Bool, g x) (a = b)
|
||||
eval fun (a : Type) (b : a -> Type) (g : (Type U) -> Bool), (fun x y : (Type U), g x) (forall x : a, b x)
|
||||
eval fun f : N -> N, (fun x y z : N, g x) (f a)
|
||||
eval fun f g : N -> N, (fun x y z : N, g x) (f a)
|
||||
|
|
|
@ -7,7 +7,7 @@
|
|||
Assumed: H
|
||||
λ (f : N → N) (y : N), g (f a)
|
||||
λ (a : N) (f : N → N) (g : (N → N) → N → N) (h : N → N → N) (z : N), h (g (λ x : N, f (f x)) (f a)) (f a)
|
||||
λ (a b : N) (g : Bool → N) (y : Bool), g (a == b)
|
||||
λ (a b : N) (g : Bool → N) (y : Bool), g (a = b)
|
||||
λ (a : Type) (b : a → Type) (g : (Type U) → Bool) (y : (Type U)), g (∀ x : a, b x)
|
||||
λ (f : N → N) (y z : N), g (f a)
|
||||
λ (f g : N → N) (y z : N), g (f a)
|
||||
|
|
|
@ -1,27 +0,0 @@
|
|||
import cast
|
||||
set_option pp::colors false
|
||||
|
||||
check fun (A A': TypeM)
|
||||
(a : A)
|
||||
(b : A')
|
||||
(L2 : A' == A),
|
||||
let b' : A := cast L2 b,
|
||||
L3 : b == b' := cast_eq L2 b
|
||||
in L3
|
||||
|
||||
check fun (A A': TypeM)
|
||||
(B : A -> TypeM)
|
||||
(B' : A' -> TypeM)
|
||||
(f : forall x : A, B x)
|
||||
(g : forall x : A', B' x)
|
||||
(a : A)
|
||||
(b : A')
|
||||
(H2 : f == g)
|
||||
(H3 : a == b),
|
||||
let L1 : A == A' := type_eq H3,
|
||||
L2 : A' == A := symm L1,
|
||||
b' : A := cast L2 b,
|
||||
L3 : b == b' := cast_eq L2 b,
|
||||
L4 : a == b' := htrans H3 L3,
|
||||
L5 : f a == f b' := congr2 f L4
|
||||
in L5
|
|
@ -1,32 +0,0 @@
|
|||
Set: pp::colors
|
||||
Set: pp::unicode
|
||||
Imported 'cast'
|
||||
Set: pp::colors
|
||||
λ (A A' : TypeM) (a : A) (b : A') (L2 : A' == A), let b' : A := cast L2 b, L3 : b == b' := cast_eq L2 b in L3 :
|
||||
∀ (A A' : TypeM) (a : A) (b : A') (L2 : A' == A), b == cast L2 b
|
||||
λ (A A' : TypeM)
|
||||
(B : A → TypeM)
|
||||
(B' : A' → TypeM)
|
||||
(f : ∀ x : A, B x)
|
||||
(g : ∀ x : A', B' x)
|
||||
(a : A)
|
||||
(b : A')
|
||||
(H2 : f == g)
|
||||
(H3 : a == b),
|
||||
let L1 : A == A' := type_eq H3,
|
||||
L2 : A' == A := symm L1,
|
||||
b' : A := cast L2 b,
|
||||
L3 : b == b' := cast_eq L2 b,
|
||||
L4 : a == b' := htrans H3 L3,
|
||||
L5 : f a == f b' := congr2 f L4
|
||||
in L5 :
|
||||
∀ (A A' : TypeM)
|
||||
(B : A → TypeM)
|
||||
(B' : A' → TypeM)
|
||||
(f : ∀ x : A, B x)
|
||||
(g : ∀ x : A', B' x)
|
||||
(a : A)
|
||||
(b : A')
|
||||
(H2 : f == g)
|
||||
(H3 : a == b),
|
||||
f a == f (cast (symm (type_eq H3)) b)
|
|
@ -26,7 +26,7 @@ definition select {A : Type} {n : N} (v : vector A n) (i : N) (H : i < n) : A :=
|
|||
definition map {A B C : Type} {n : N} (f : A → B → C) (v1 : vector A n) (v2 : vector B n) : vector C n :=
|
||||
λ (i : N) (H : i < n), f (v1 i H) (v2 i H)
|
||||
select (update (const three ⊥) two ⊤) two two_lt_three : Bool
|
||||
if (two == two) then ⊤ else ⊥
|
||||
if (two = two) then ⊤ else ⊥
|
||||
update (const three ⊥) two ⊤ : vector Bool three
|
||||
|
||||
--------
|
||||
|
@ -46,4 +46,4 @@ map normal form -->
|
|||
f (v1 i H) (v2 i H)
|
||||
|
||||
update normal form -->
|
||||
λ (A : Type) (n : N) (v : ∀ (i : N), i < n → A) (i : N) (d : A) (j : N) (H : j < n), if (j == i) then d else v j H
|
||||
λ (A : Type) (n : N) (v : ∀ (i : N), i < n → A) (i : N) (d : A) (j : N) (H : j < n), if (j = i) then d else v j H
|
||||
|
|
|
@ -6,7 +6,7 @@
|
|||
⊤
|
||||
Assumed: a
|
||||
a ⊕ a ⊕ a
|
||||
@subst : ∀ (A : TypeU) (a b : A) (P : A → Bool), P a → a = b → P b
|
||||
@subst : ∀ (A : TypeU') (a b : A) (P : A → Bool), P a → a = b → P b
|
||||
Proved: EM2
|
||||
EM2 : ∀ a : Bool, a ∨ ¬ a
|
||||
EM2 a : a ∨ ¬ a
|
||||
|
|
|
@ -4,4 +4,4 @@
|
|||
Assumed: g
|
||||
∀ a b : Type, ∃ c : Type, g a b = f c
|
||||
∀ a b : Type, ∃ c : Type, g a b = f c : Bool
|
||||
∀ (a b : Type), (∀ (x : Type), g a b == f x → ⊥) → ⊥
|
||||
∀ (a b : Type), (∀ (x : Type), g a b = f x → ⊥) → ⊥
|
||||
|
|
|
@ -10,9 +10,7 @@
|
|||
Assumed: EqNice
|
||||
@EqNice N n1 n2
|
||||
@f N n1 n2 : N
|
||||
@congr :
|
||||
∀ (A : TypeU) (B : A → TypeU) (f g : ∀ x : A, B x) (a b : A),
|
||||
@eq (∀ x : A, B x) f g → @eq A a b → f a == g b
|
||||
@congr : ∀ (A B : TypeU') (f g : A → B) (a b : A), @eq (A → B) f g → @eq A a b → @eq B (f a) (g b)
|
||||
@f N n1 n2
|
||||
Assumed: a
|
||||
Assumed: b
|
||||
|
@ -23,7 +21,7 @@
|
|||
axiom H1 : @eq N a b ∧ @eq N b c
|
||||
theorem Pr : @eq N (g a) (g c) :=
|
||||
@congr N
|
||||
(λ x : N, N)
|
||||
N
|
||||
g
|
||||
g
|
||||
a
|
||||
|
|
|
@ -6,7 +6,7 @@
|
|||
Set: lean::pp::implicit
|
||||
variable h : N → N → N
|
||||
theorem congrH {a1 a2 b1 b2 : N} (H1 : @eq N a1 b1) (H2 : @eq N a2 b2) : @eq N (h a1 a2) (h b1 b2) :=
|
||||
@congr N (λ x : N, N) (h a1) (h b1) a2 b2 (@congr N (λ x : N, N → N) h h a1 b1 (@refl (N → N → N) h) H1) H2
|
||||
@congr N N (h a1) (h b1) a2 b2 (@congr N (N → N) h h a1 b1 (@refl (N → N → N) h) H1) H2
|
||||
Set: lean::pp::implicit
|
||||
variable h : N → N → N
|
||||
theorem congrH {a1 a2 b1 b2 : N} (H1 : a1 = b1) (H2 : a2 = b2) : h a1 a2 = h b1 b2 := congr (congr (refl h) H1) H2
|
||||
|
@ -15,7 +15,7 @@ theorem congrH {a1 a2 b1 b2 : N} (H1 : a1 = b1) (H2 : a2 = b2) : h a1 a2 = h b1
|
|||
theorem Example1 (a b c d : N) (H : @eq N a b ∧ @eq N b c ∨ @eq N a d ∧ @eq N d c) : @eq N (h a b) (h c b) :=
|
||||
@or_elim (@eq N a b ∧ @eq N b c)
|
||||
(@eq N a d ∧ @eq N d c)
|
||||
(h a b == h c b)
|
||||
(@eq N (h a b) (h c b))
|
||||
H
|
||||
(λ H1 : @eq N a b ∧ @eq N b c,
|
||||
@congrH a
|
||||
|
|
|
@ -1,34 +0,0 @@
|
|||
import cast
|
||||
set_option pp::colors false
|
||||
|
||||
check fun (A A': TypeM)
|
||||
(a : A)
|
||||
(b : A')
|
||||
(L2 : A' == A),
|
||||
let b' : A := cast L2 b,
|
||||
L3 : b == b' := cast_eq L2 b
|
||||
in L3
|
||||
|
||||
check fun (A A': TypeM)
|
||||
(B : A -> TypeM)
|
||||
(B' : A' -> TypeM)
|
||||
(f : forall x : A, B x)
|
||||
(g : forall x : A', B' x)
|
||||
(a : A)
|
||||
(b : A')
|
||||
(H1 : (forall x : A, B x) == (forall x : A', B' x))
|
||||
(H2 : f == g)
|
||||
(H3 : a == b),
|
||||
let L1 : A == A' := type_eq H3,
|
||||
L2 : A' == A := symm L1,
|
||||
b' : A := cast L2 b,
|
||||
L3 : b == b' := cast_eq L2 b,
|
||||
L4 : a == b' := htrans H3 L3,
|
||||
L5 : f a == f b' := congr2 f L4,
|
||||
S1 : (forall x : A', B' x) == (forall x : A, B x) := symm H1,
|
||||
g' : (forall x : A, B x) := cast S1 g,
|
||||
L6 : g == g' := cast_eq S1 g,
|
||||
L7 : f == g' := htrans H2 L6,
|
||||
L8 : f b' == g' b' := congr1 b' L7,
|
||||
L9 : f a == g' b' := htrans L5 L8
|
||||
in L9
|
|
@ -1,40 +0,0 @@
|
|||
Set: pp::colors
|
||||
Set: pp::unicode
|
||||
Imported 'cast'
|
||||
Set: pp::colors
|
||||
λ (A A' : TypeM) (a : A) (b : A') (L2 : A' == A), let b' : A := cast L2 b, L3 : b == b' := cast_eq L2 b in L3 :
|
||||
∀ (A A' : TypeM) (a : A) (b : A') (L2 : A' == A), b == cast L2 b
|
||||
λ (A A' : TypeM)
|
||||
(B : A → TypeM)
|
||||
(B' : A' → TypeM)
|
||||
(f : ∀ x : A, B x)
|
||||
(g : ∀ x : A', B' x)
|
||||
(a : A)
|
||||
(b : A')
|
||||
(H1 : (∀ x : A, B x) == (∀ x : A', B' x))
|
||||
(H2 : f == g)
|
||||
(H3 : a == b),
|
||||
let L1 : A == A' := type_eq H3,
|
||||
L2 : A' == A := symm L1,
|
||||
b' : A := cast L2 b,
|
||||
L3 : b == b' := cast_eq L2 b,
|
||||
L4 : a == b' := htrans H3 L3,
|
||||
L5 : f a == f b' := congr2 f L4,
|
||||
S1 : (∀ x : A', B' x) == (∀ x : A, B x) := symm H1,
|
||||
g' : ∀ x : A, B x := cast S1 g,
|
||||
L6 : g == g' := cast_eq S1 g,
|
||||
L7 : f == g' := htrans H2 L6,
|
||||
L8 : f b' == g' b' := congr1 b' L7,
|
||||
L9 : f a == g' b' := htrans L5 L8
|
||||
in L9 :
|
||||
∀ (A A' : TypeM)
|
||||
(B : A → TypeM)
|
||||
(B' : A' → TypeM)
|
||||
(f : ∀ x : A, B x)
|
||||
(g : ∀ x : A', B' x)
|
||||
(a : A)
|
||||
(b : A')
|
||||
(H1 : (∀ x : A, B x) == (∀ x : A', B' x))
|
||||
(H2 : f == g)
|
||||
(H3 : a == b),
|
||||
f a == cast (symm H1) g (cast (symm (type_eq H3)) b)
|
|
@ -25,8 +25,9 @@ local ok, msg = pcall(function() child:add_definition("val3", Const("Int"), Cons
|
|||
assert(not ok)
|
||||
print(msg)
|
||||
assert(child:normalize(Const("val2")) == Const("val2"))
|
||||
child:add_theorem("Th1", HEq(iVal(0), iVal(0)), Const("trivial"))
|
||||
child:add_axiom("H1", HEq(Const("x"), iVal(0)))
|
||||
local Int = Const("Int")
|
||||
child:add_theorem("Th1", mk_eq(Int, iVal(0), iVal(0)), Const("trivial"))
|
||||
child:add_axiom("H1", mk_eq(Int, Const("x"), iVal(0)))
|
||||
assert(child:has_object("H1"))
|
||||
local ctx = context(context(), "x", Const("Int"), iVal(10))
|
||||
assert(child:normalize(Var(0), ctx) == iVal(10))
|
||||
|
|
|
@ -3,7 +3,6 @@ n = e:get_body()
|
|||
check_error(function() mk_heq(n, Const("a")) end)
|
||||
print(Const("a") < Const("b"))
|
||||
check_error(function() mk_app(Const("a")) end)
|
||||
print(mk_heq(Const("a"), Const("b")))
|
||||
print(mk_pi("x", Const("N"), Var(0)))
|
||||
print(Pi("x", Const("N"), Const("x")))
|
||||
assert(mk_pi("x", Const("N"), Var(0)) == Pi("x", Const("N"), Const("x")))
|
||||
|
|
|
@ -22,10 +22,6 @@ function print_leaves(e, ctx)
|
|||
print("abstraction var name: " .. tostring(name))
|
||||
print_leaves(domain, ctx)
|
||||
print_leaves(body, ctx:extend(name, domain))
|
||||
elseif k == expr_kind.HEq then
|
||||
local lhs, rhs = e:fields()
|
||||
print_leaves(lhs, ctx)
|
||||
print_leaves(rhs, ctx)
|
||||
elseif k == expr_kind.Let then
|
||||
local name, ty, val, body = e:fields()
|
||||
print("let var name: " .. tostring(name))
|
||||
|
@ -43,6 +39,6 @@ local x, y, z = Consts("x, y, z")
|
|||
assert(is_expr(f))
|
||||
|
||||
local F = fun(h, mk_arrow(N, N),
|
||||
Let(x, h(a), HEq(f(x), h(x))))
|
||||
Let(x, h(a), mk_eq(N, f(x), h(x))))
|
||||
print(F)
|
||||
print_leaves(F, context())
|
||||
|
|
|
@ -25,7 +25,6 @@ assert(mk_metavar("M"):is_metavar())
|
|||
assert(mk_real_value(mpq(10)):is_value())
|
||||
assert(not F:has_metavar())
|
||||
assert(f(mk_metavar("M")):has_metavar())
|
||||
assert(HEq(a, b):is_heq())
|
||||
assert(F:num_args() == 3)
|
||||
assert(F:arg(0) == f)
|
||||
assert(F:arg(1) == g(x, a))
|
||||
|
|
|
@ -21,7 +21,7 @@ assert(env:is_proposition(parse_lean([[true -> false]])))
|
|||
assert(env:is_proposition(parse_lean([[Nat -> false]])))
|
||||
assert(not env:is_proposition(parse_lean([[true -> Nat]])))
|
||||
assert(not env:is_proposition(parse_lean([[Type]])))
|
||||
assert(env:is_proposition(parse_lean([[0 == 1]])))
|
||||
assert(env:is_proposition(parse_lean([[0 = 1]])))
|
||||
assert(env:is_proposition(parse_lean([[q]])))
|
||||
|
||||
|
||||
|
|
|
@ -16,7 +16,6 @@ function must_unify(t1, t2)
|
|||
assert(s:apply(t1) == s:apply(t2))
|
||||
end
|
||||
Bool = Const("Bool")
|
||||
must_unify(HEq(a, m1), HEq(m2, m2))
|
||||
must_unify(Type(), m1)
|
||||
must_unify(fun(x, Bool, x), fun(x, Bool, m1))
|
||||
must_unify(Pi(x, Bool, x), Pi(x, Bool, m1))
|
||||
|
|
Loading…
Reference in a new issue