feat(frontends/lean): position information in error messages
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
This commit is contained in:
parent
e85b1f1ac0
commit
a51139e63b
8 changed files with 16 additions and 14 deletions
|
@ -9,6 +9,7 @@ nary_combinator("Then", Then)
|
||||||
nary_combinator("OrElse", OrElse)
|
nary_combinator("OrElse", OrElse)
|
||||||
const_tactic("exact", assumption_tac)
|
const_tactic("exact", assumption_tac)
|
||||||
const_tactic("trivial", trivial_tac)
|
const_tactic("trivial", trivial_tac)
|
||||||
|
const_tactic("id", id_tac)
|
||||||
const_tactic("absurd", absurd_tac)
|
const_tactic("absurd", absurd_tac)
|
||||||
const_tactic("conj_hyp", conj_hyp_tac)
|
const_tactic("conj_hyp", conj_hyp_tac)
|
||||||
const_tactic("disj_hyp", disj_hyp_tac)
|
const_tactic("disj_hyp", disj_hyp_tac)
|
||||||
|
|
|
@ -996,7 +996,7 @@ expr parser_imp::parse_show_expr() {
|
||||||
} else if (curr_is_identifier() && curr_name() == g_from) {
|
} else if (curr_is_identifier() && curr_name() == g_from) {
|
||||||
next();
|
next();
|
||||||
expr b = parse_expr();
|
expr b = parse_expr();
|
||||||
return mk_let(g_H_show, t, b, Var(0));
|
return save(mk_let(g_H_show, t, b, Var(0)), p);
|
||||||
} else {
|
} else {
|
||||||
throw parser_error("invalid 'show' expected, 'from' or 'by' expected", p);
|
throw parser_error("invalid 'show' expected, 'from' or 'by' expected", p);
|
||||||
}
|
}
|
||||||
|
@ -1015,11 +1015,12 @@ expr parser_imp::parse_have_expr() {
|
||||||
check_comma_next("invalid 'have' expression, ',' expected");
|
check_comma_next("invalid 'have' expression, ',' expected");
|
||||||
expr val;
|
expr val;
|
||||||
if (curr() == scanner::token::By) {
|
if (curr() == scanner::token::By) {
|
||||||
|
auto p2 = pos();
|
||||||
next();
|
next();
|
||||||
tactic tac = parse_tactic_expr();
|
tactic tac = parse_tactic_expr();
|
||||||
expr r = mk_placeholder(some_expr(t));
|
expr r = mk_placeholder(some_expr(t));
|
||||||
m_tactic_hints.insert(mk_pair(r, tac));
|
m_tactic_hints.insert(mk_pair(r, tac));
|
||||||
val = save(r, p);
|
val = save(r, p2);
|
||||||
} else if (curr_is_identifier() && curr_name() == g_from) {
|
} else if (curr_is_identifier() && curr_name() == g_from) {
|
||||||
next();
|
next();
|
||||||
val = parse_expr();
|
val = parse_expr();
|
||||||
|
@ -1027,7 +1028,7 @@ expr parser_imp::parse_have_expr() {
|
||||||
check_comma_next("invalid 'have' expression, ',' expected");
|
check_comma_next("invalid 'have' expression, ',' expected");
|
||||||
register_binding(id);
|
register_binding(id);
|
||||||
expr body = parse_expr();
|
expr body = parse_expr();
|
||||||
return mk_let(id, t, val, body);
|
return save(mk_let(id, t, val, body), p);
|
||||||
}
|
}
|
||||||
|
|
||||||
/** \brief Parse <tt>'by' tactic</tt> */
|
/** \brief Parse <tt>'by' tactic</tt> */
|
||||||
|
|
|
@ -83,7 +83,7 @@ expr parser_imp::mk_proof_for(proof_state const & s, pos_info const & p, context
|
||||||
}
|
}
|
||||||
return pr;
|
return pr;
|
||||||
} else {
|
} else {
|
||||||
throw tactic_cmd_error("invalid 'done' command, proof cannot be produced from this state", p, s);
|
throw tactic_cmd_error("failed to create proof for the following proof state", p, s);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
|
@ -4,13 +4,13 @@
|
||||||
Assumed: f
|
Assumed: f
|
||||||
Assumed: Ax1
|
Assumed: Ax1
|
||||||
Proved: T1a
|
Proved: T1a
|
||||||
bad_simp2.lean:14:3: error: invalid 'done' command, proof cannot be produced from this state
|
bad_simp2.lean:14:3: error: failed to create proof for the following proof state
|
||||||
Proof state:
|
Proof state:
|
||||||
A : (Type 1) ⊢ f A = A
|
A : (Type 1) ⊢ f A = A
|
||||||
Assumed: g
|
Assumed: g
|
||||||
Assumed: Ax2
|
Assumed: Ax2
|
||||||
Proved: T2a
|
Proved: T2a
|
||||||
bad_simp2.lean:24:3: error: invalid 'done' command, proof cannot be produced from this state
|
bad_simp2.lean:24:3: error: failed to create proof for the following proof state
|
||||||
Proof state:
|
Proof state:
|
||||||
A : Type → (Type 1) ⊢ g A = A Bool
|
A : Type → (Type 1) ⊢ g A = A Bool
|
||||||
Assumed: h
|
Assumed: h
|
||||||
|
@ -18,13 +18,13 @@ A : Type → (Type 1) ⊢ g A = A Bool
|
||||||
Proved: T3a
|
Proved: T3a
|
||||||
Assumed: Ax4
|
Assumed: Ax4
|
||||||
Proved: T4a
|
Proved: T4a
|
||||||
bad_simp2.lean:40:3: error: invalid 'done' command, proof cannot be produced from this state
|
bad_simp2.lean:40:3: error: failed to create proof for the following proof state
|
||||||
Proof state:
|
Proof state:
|
||||||
A : Type, B : (Type 1) ⊢ h A B = B
|
A : Type, B : (Type 1) ⊢ h A B = B
|
||||||
Assumed: h2
|
Assumed: h2
|
||||||
Assumed: Ax5
|
Assumed: Ax5
|
||||||
Proved: T5a
|
Proved: T5a
|
||||||
bad_simp2.lean:51:3: error: invalid 'done' command, proof cannot be produced from this state
|
bad_simp2.lean:51:3: error: failed to create proof for the following proof state
|
||||||
Proof state:
|
Proof state:
|
||||||
A : Type, B : (Type 1) ⊢ h2 A B = A
|
A : Type, B : (Type 1) ⊢ h2 A B = A
|
||||||
theorem T5a (A B : Type) : h2 A B = A :=
|
theorem T5a (A B : Type) : h2 A B = A :=
|
||||||
|
|
|
@ -2,10 +2,10 @@
|
||||||
Set: pp::unicode
|
Set: pp::unicode
|
||||||
Proof state:
|
Proof state:
|
||||||
a : Bool, b : Bool, H : a, H::1 : b ⊢ a ∧ b
|
a : Bool, b : Bool, H : a, H::1 : b ⊢ a ∧ b
|
||||||
## [stdin]:5:0: error: invalid 'done' command, proof cannot be produced from this state
|
## [stdin]:5:0: error: failed to create proof for the following proof state
|
||||||
Proof state:
|
Proof state:
|
||||||
a : Bool, b : Bool, H : a, H::1 : b ⊢ a ∧ b
|
a : Bool, b : Bool, H : a, H::1 : b ⊢ a ∧ b
|
||||||
## [stdin]:6:0: error: invalid 'done' command, proof cannot be produced from this state
|
## [stdin]:6:0: error: failed to create proof for the following proof state
|
||||||
Proof state:
|
Proof state:
|
||||||
a : Bool, b : Bool, H : a, H::1 : b ⊢ a ∧ b
|
a : Bool, b : Bool, H : a, H::1 : b ⊢ a ∧ b
|
||||||
## [stdin]:7:0: error: unknown tactic 'imp_tac2'
|
## [stdin]:7:0: error: unknown tactic 'imp_tac2'
|
||||||
|
|
|
@ -7,7 +7,7 @@ no goals
|
||||||
## Proof state:
|
## Proof state:
|
||||||
A : Bool, B : Bool, H : A ∧ B, H1 : A ⊢ B
|
A : Bool, B : Bool, H : A ∧ B, H1 : A ⊢ B
|
||||||
## [stdin]:15:3: error: unknown tactic 'simple2_tac'
|
## [stdin]:15:3: error: unknown tactic 'simple2_tac'
|
||||||
## [stdin]:15:16: error: invalid 'done' command, proof cannot be produced from this state
|
## [stdin]:15:16: error: failed to create proof for the following proof state
|
||||||
Proof state:
|
Proof state:
|
||||||
A : Bool, B : Bool, H : A ∧ B, H1 : A ⊢ B
|
A : Bool, B : Bool, H : A ∧ B, H1 : A ⊢ B
|
||||||
## Proof state:
|
## Proof state:
|
||||||
|
|
|
@ -24,11 +24,11 @@ theorem not_prime_eq (n : Nat) (H1 : n ≥ 2) (H2 : ¬ prime n) : ∃ m, m | n
|
||||||
:= have H3 : ¬ n ≥ 2 ∨ ¬ (∀ m : Nat, m | n → m = 1 ∨ m = n),
|
:= have H3 : ¬ n ≥ 2 ∨ ¬ (∀ m : Nat, m | n → m = 1 ∨ m = n),
|
||||||
from (not_and _ _ ◂ H2),
|
from (not_and _ _ ◂ H2),
|
||||||
have H4 : ¬ ¬ n ≥ 2,
|
have H4 : ¬ ¬ n ≥ 2,
|
||||||
from by skip, -- Ignore this hole
|
by skip, -- Ignore this hole
|
||||||
obtain (m : Nat) (H5 : ¬ (m | n → m = 1 ∨ m = n)),
|
obtain (m : Nat) (H5 : ¬ (m | n → m = 1 ∨ m = n)),
|
||||||
from (not_forall_elim (resolve1 H3 H4)),
|
from (not_forall_elim (resolve1 H3 H4)),
|
||||||
have H6 : m | n ∧ ¬ (m = 1 ∨ m = n),
|
have H6 : m | n ∧ ¬ (m = 1 ∨ m = n),
|
||||||
from _, -- <<< Lean will display the proof state for this hole
|
by id, -- <<< id is the "do-nothing" tactic, it will fail and Lean will display the proof state for this hole
|
||||||
have H7 : ¬ (m = 1 ∨ m = n) ↔ (m ≠ 1 ∧ m ≠ n),
|
have H7 : ¬ (m = 1 ∨ m = n) ↔ (m ≠ 1 ∧ m ≠ n),
|
||||||
from (not_or (m = 1) (m = n)),
|
from (not_or (m = 1) (m = n)),
|
||||||
have H8 : m | n ∧ m ≠ 1 ∧ m ≠ n,
|
have H8 : m | n ∧ m ≠ 1 ∧ m ≠ n,
|
||||||
|
|
|
@ -8,7 +8,7 @@
|
||||||
Proved: dvd_intro
|
Proved: dvd_intro
|
||||||
Proved: dvd_trans
|
Proved: dvd_trans
|
||||||
Defined: prime
|
Defined: prime
|
||||||
j4.lean:38:0: error: invalid tactic command, unexpected end of file
|
j4.lean:31:5: error: failed to create proof for the following proof state
|
||||||
Proof state:
|
Proof state:
|
||||||
n :
|
n :
|
||||||
ℕ,
|
ℕ,
|
||||||
|
|
Loading…
Reference in a new issue