refactor(library): using section variables
This commit is contained in:
parent
d5cad765a0
commit
a52b21c92d
2 changed files with 47 additions and 30 deletions
|
@ -113,24 +113,26 @@ infix `<->` := iff
|
||||||
infix `↔` := iff
|
infix `↔` := iff
|
||||||
|
|
||||||
namespace iff
|
namespace iff
|
||||||
theorem def {a b : Prop} : (a ↔ b) = ((a → b) ∧ (b → a)) :=
|
section
|
||||||
|
variables {a b c : Prop}
|
||||||
|
theorem def : (a ↔ b) = ((a → b) ∧ (b → a)) :=
|
||||||
rfl
|
rfl
|
||||||
|
|
||||||
theorem intro {a b : Prop} (H₁ : a → b) (H₂ : b → a) : a ↔ b :=
|
theorem intro (H₁ : a → b) (H₂ : b → a) : a ↔ b :=
|
||||||
and.intro H₁ H₂
|
and.intro H₁ H₂
|
||||||
|
|
||||||
theorem elim {a b c : Prop} (H₁ : (a → b) → (b → a) → c) (H₂ : a ↔ b) : c :=
|
theorem elim (H₁ : (a → b) → (b → a) → c) (H₂ : a ↔ b) : c :=
|
||||||
and.rec H₁ H₂
|
and.rec H₁ H₂
|
||||||
|
|
||||||
theorem elim_left {a b : Prop} (H : a ↔ b) : a → b :=
|
theorem elim_left (H : a ↔ b) : a → b :=
|
||||||
elim (assume H₁ H₂, H₁) H
|
elim (assume H₁ H₂, H₁) H
|
||||||
|
|
||||||
definition mp := @elim_left
|
definition mp := @elim_left
|
||||||
|
|
||||||
theorem elim_right {a b : Prop} (H : a ↔ b) : b → a :=
|
theorem elim_right (H : a ↔ b) : b → a :=
|
||||||
elim (assume H₁ H₂, H₂) H
|
elim (assume H₁ H₂, H₂) H
|
||||||
|
|
||||||
theorem flip_sign {a b : Prop} (H₁ : a ↔ b) : ¬a ↔ ¬b :=
|
theorem flip_sign (H₁ : a ↔ b) : ¬a ↔ ¬b :=
|
||||||
intro
|
intro
|
||||||
(assume Hna, mt (elim_right H₁) Hna)
|
(assume Hna, mt (elim_right H₁) Hna)
|
||||||
(assume Hnb, mt (elim_left H₁) Hnb)
|
(assume Hnb, mt (elim_left H₁) Hnb)
|
||||||
|
@ -141,21 +143,23 @@ namespace iff
|
||||||
theorem rfl {a : Prop} : a ↔ a :=
|
theorem rfl {a : Prop} : a ↔ a :=
|
||||||
refl a
|
refl a
|
||||||
|
|
||||||
theorem trans {a b c : Prop} (H₁ : a ↔ b) (H₂ : b ↔ c) : a ↔ c :=
|
theorem trans (H₁ : a ↔ b) (H₂ : b ↔ c) : a ↔ c :=
|
||||||
intro
|
intro
|
||||||
(assume Ha, elim_left H₂ (elim_left H₁ Ha))
|
(assume Ha, elim_left H₂ (elim_left H₁ Ha))
|
||||||
(assume Hc, elim_right H₁ (elim_right H₂ Hc))
|
(assume Hc, elim_right H₁ (elim_right H₂ Hc))
|
||||||
|
|
||||||
theorem symm {a b : Prop} (H : a ↔ b) : b ↔ a :=
|
theorem symm (H : a ↔ b) : b ↔ a :=
|
||||||
intro
|
intro
|
||||||
(assume Hb, elim_right H Hb)
|
(assume Hb, elim_right H Hb)
|
||||||
(assume Ha, elim_left H Ha)
|
(assume Ha, elim_left H Ha)
|
||||||
|
|
||||||
theorem true_elim {a : Prop} (H : a ↔ true) : a :=
|
theorem true_elim (H : a ↔ true) : a :=
|
||||||
mp (symm H) trivial
|
mp (symm H) trivial
|
||||||
|
|
||||||
theorem false_elim {a : Prop} (H : a ↔ false) : ¬a :=
|
theorem false_elim (H : a ↔ false) : ¬a :=
|
||||||
assume Ha : a, mp H Ha
|
assume Ha : a, mp H Ha
|
||||||
|
|
||||||
|
end
|
||||||
end iff
|
end iff
|
||||||
|
|
||||||
calc_refl iff.refl
|
calc_refl iff.refl
|
||||||
|
@ -168,12 +172,13 @@ iff.intro (λ Ha, H ▸ Ha) (λ Hb, H⁻¹ ▸ Hb)
|
||||||
|
|
||||||
-- comm and assoc for and / or
|
-- comm and assoc for and / or
|
||||||
-- ---------------------------
|
-- ---------------------------
|
||||||
|
|
||||||
namespace and
|
namespace and
|
||||||
theorem comm {a b : Prop} : a ∧ b ↔ b ∧ a :=
|
section
|
||||||
|
variables {a b c : Prop}
|
||||||
|
theorem comm : a ∧ b ↔ b ∧ a :=
|
||||||
iff.intro (λH, swap H) (λH, swap H)
|
iff.intro (λH, swap H) (λH, swap H)
|
||||||
|
|
||||||
theorem assoc {a b c : Prop} : (a ∧ b) ∧ c ↔ a ∧ (b ∧ c) :=
|
theorem assoc : (a ∧ b) ∧ c ↔ a ∧ (b ∧ c) :=
|
||||||
iff.intro
|
iff.intro
|
||||||
(assume H, intro
|
(assume H, intro
|
||||||
(elim_left (elim_left H))
|
(elim_left (elim_left H))
|
||||||
|
@ -181,13 +186,16 @@ namespace and
|
||||||
(assume H, intro
|
(assume H, intro
|
||||||
(intro (elim_left H) (elim_left (elim_right H)))
|
(intro (elim_left H) (elim_left (elim_right H)))
|
||||||
(elim_right (elim_right H)))
|
(elim_right (elim_right H)))
|
||||||
|
end
|
||||||
end and
|
end and
|
||||||
|
|
||||||
namespace or
|
namespace or
|
||||||
theorem comm {a b : Prop} : a ∨ b ↔ b ∨ a :=
|
section
|
||||||
|
variables {a b c : Prop}
|
||||||
|
theorem comm : a ∨ b ↔ b ∨ a :=
|
||||||
iff.intro (λH, swap H) (λH, swap H)
|
iff.intro (λH, swap H) (λH, swap H)
|
||||||
|
|
||||||
theorem assoc {a b c : Prop} : (a ∨ b) ∨ c ↔ a ∨ (b ∨ c) :=
|
theorem assoc : (a ∨ b) ∨ c ↔ a ∨ (b ∨ c) :=
|
||||||
iff.intro
|
iff.intro
|
||||||
(assume H, elim H
|
(assume H, elim H
|
||||||
(assume H₁, elim H₁
|
(assume H₁, elim H₁
|
||||||
|
@ -199,4 +207,5 @@ namespace or
|
||||||
(assume H₁, elim H₁
|
(assume H₁, elim H₁
|
||||||
(assume Hb, inl (inr Hb))
|
(assume Hb, inl (inr Hb))
|
||||||
(assume Hc, inr Hc)))
|
(assume Hc, inr Hc)))
|
||||||
|
end
|
||||||
end or
|
end or
|
||||||
|
|
|
@ -22,21 +22,24 @@ definition rfl {A : Type} {a : A} := eq.refl a
|
||||||
theorem proof_irrel {a : Prop} {H1 H2 : a} : H1 = H2 := rfl
|
theorem proof_irrel {a : Prop} {H1 H2 : a} : H1 = H2 := rfl
|
||||||
|
|
||||||
namespace eq
|
namespace eq
|
||||||
theorem id_refl {A : Type} {a : A} (H1 : a = a) : H1 = (eq.refl a) :=
|
section
|
||||||
|
variables {A : Type}
|
||||||
|
variables {a b c : A}
|
||||||
|
theorem id_refl (H1 : a = a) : H1 = (eq.refl a) :=
|
||||||
proof_irrel
|
proof_irrel
|
||||||
|
|
||||||
theorem irrel {A : Type} {a b : A} (H1 H2 : a = b) : H1 = H2 :=
|
theorem irrel (H1 H2 : a = b) : H1 = H2 :=
|
||||||
proof_irrel
|
proof_irrel
|
||||||
|
|
||||||
theorem subst {A : Type} {a b : A} {P : A → Prop} (H1 : a = b) (H2 : P a) : P b :=
|
theorem subst {P : A → Prop} (H1 : a = b) (H2 : P a) : P b :=
|
||||||
rec H2 H1
|
rec H2 H1
|
||||||
|
|
||||||
theorem trans {A : Type} {a b c : A} (H1 : a = b) (H2 : b = c) : a = c :=
|
theorem trans (H1 : a = b) (H2 : b = c) : a = c :=
|
||||||
subst H2 H1
|
subst H2 H1
|
||||||
|
|
||||||
theorem symm {A : Type} {a b : A} (H : a = b) : b = a :=
|
theorem symm (H : a = b) : b = a :=
|
||||||
subst H (refl a)
|
subst H (refl a)
|
||||||
|
end
|
||||||
namespace ops
|
namespace ops
|
||||||
postfix `⁻¹` := symm
|
postfix `⁻¹` := symm
|
||||||
infixr `⬝` := trans
|
infixr `⬝` := trans
|
||||||
|
@ -175,17 +178,22 @@ definition ne {A : Type} (a b : A) := ¬(a = b)
|
||||||
infix `≠` := ne
|
infix `≠` := ne
|
||||||
|
|
||||||
namespace ne
|
namespace ne
|
||||||
theorem intro {A : Type} {a b : A} (H : a = b → false) : a ≠ b :=
|
section
|
||||||
|
variable {A : Type}
|
||||||
|
variables {a b : A}
|
||||||
|
|
||||||
|
theorem intro (H : a = b → false) : a ≠ b :=
|
||||||
H
|
H
|
||||||
|
|
||||||
theorem elim {A : Type} {a b : A} (H1 : a ≠ b) (H2 : a = b) : false :=
|
theorem elim (H1 : a ≠ b) (H2 : a = b) : false :=
|
||||||
H1 H2
|
H1 H2
|
||||||
|
|
||||||
theorem irrefl {A : Type} {a : A} (H : a ≠ a) : false :=
|
theorem irrefl (H : a ≠ a) : false :=
|
||||||
H rfl
|
H rfl
|
||||||
|
|
||||||
theorem symm {A : Type} {a b : A} (H : a ≠ b) : b ≠ a :=
|
theorem symm (H : a ≠ b) : b ≠ a :=
|
||||||
assume H1 : b = a, H (H1⁻¹)
|
assume H1 : b = a, H (H1⁻¹)
|
||||||
|
end
|
||||||
end ne
|
end ne
|
||||||
|
|
||||||
theorem a_neq_a_elim {A : Type} {a : A} (H : a ≠ a) : false :=
|
theorem a_neq_a_elim {A : Type} {a : A} (H : a ≠ a) : false :=
|
||||||
|
|
Loading…
Reference in a new issue