diff --git a/library/data/set/basic.lean b/library/data/set/basic.lean index 690a2a252..6c276dc43 100644 --- a/library/data/set/basic.lean +++ b/library/data/set/basic.lean @@ -8,116 +8,161 @@ Author: Jeremy Avigad, Leonardo de Moura import logic open eq.ops -definition set [reducible] (T : Type) := T → Prop +definition set [reducible] (X : Type) := X → Prop namespace set -variable {T : Type} +variable {X : Type} /- membership and subset -/ -definition mem [reducible] (x : T) (a : set T) := a x -notation e ∈ a := mem e a +definition mem [reducible] (x : X) (a : set X) := a x +infix `∈` := mem +notation a ∉ b := ¬ mem a b -theorem setext {a b : set T} (H : ∀x, x ∈ a ↔ x ∈ b) : a = b := +theorem setext {a b : set X} (H : ∀x, x ∈ a ↔ x ∈ b) : a = b := funext (take x, propext (H x)) -definition subset (a b : set T) := ∀⦃x⦄, x ∈ a → x ∈ b +definition subset (a b : set X) := ∀⦃x⦄, x ∈ a → x ∈ b infix `⊆`:50 := subset /- bounded quantification -/ -abbreviation bounded_forall (a : set T) (P : T → Prop) := ∀⦃x⦄, x ∈ a → P x +abbreviation bounded_forall (a : set X) (P : X → Prop) := ∀⦃x⦄, x ∈ a → P x notation `forallb` binders `∈` a `,` r:(scoped:1 P, P) := bounded_forall a r notation `∀₀` binders `∈` a `,` r:(scoped:1 P, P) := bounded_forall a r -abbreviation bounded_exists (a : set T) (P : T → Prop) := ∃⦃x⦄, x ∈ a ∧ P x +abbreviation bounded_exists (a : set X) (P : X → Prop) := ∃⦃x⦄, x ∈ a ∧ P x notation `existsb` binders `∈` a `,` r:(scoped:1 P, P) := bounded_exists a r notation `∃₀` binders `∈` a `,` r:(scoped:1 P, P) := bounded_exists a r /- empty set -/ -definition empty [reducible] : set T := λx, false +definition empty [reducible] : set X := λx, false notation `∅` := empty -theorem mem_empty (x : T) : ¬ (x ∈ ∅) := +theorem not_mem_empty (x : X) : ¬ (x ∈ ∅) := assume H : x ∈ ∅, H +theorem mem_empty_eq (x : X) : x ∈ ∅ = false := rfl + /- universal set -/ -definition univ : set T := λx, true +definition univ : set X := λx, true -theorem mem_univ (x : T) : x ∈ univ := trivial +theorem mem_univ (x : X) : x ∈ univ := trivial -/- intersection -/ - -definition inter [reducible] (a b : set T) : set T := λx, x ∈ a ∧ x ∈ b -notation a ∩ b := inter a b - -theorem mem_inter (x : T) (a b : set T) : x ∈ a ∩ b ↔ x ∈ a ∧ x ∈ b := !iff.refl - -theorem inter_self (a : set T) : a ∩ a = a := -setext (take x, !and_self) - -theorem inter_empty (a : set T) : a ∩ ∅ = ∅ := -setext (take x, !and_false) - -theorem empty_inter (a : set T) : ∅ ∩ a = ∅ := -setext (take x, !false_and) - -theorem inter.comm (a b : set T) : a ∩ b = b ∩ a := -setext (take x, !and.comm) - -theorem inter.assoc (a b c : set T) : (a ∩ b) ∩ c = a ∩ (b ∩ c) := -setext (take x, !and.assoc) +theorem mem_univ_eq (x : X) : x ∈ univ = true := rfl /- union -/ -definition union [reducible] (a b : set T) : set T := λx, x ∈ a ∨ x ∈ b +definition union [reducible] (a b : set X) : set X := λx, x ∈ a ∨ x ∈ b notation a ∪ b := union a b -theorem mem_union (x : T) (a b : set T) : x ∈ a ∪ b ↔ x ∈ a ∨ x ∈ b := !iff.refl +theorem mem_union (x : X) (a b : set X) : x ∈ a ∪ b ↔ x ∈ a ∨ x ∈ b := !iff.refl -theorem union_self (a : set T) : a ∪ a = a := +theorem mem_union_eq (x : X) (a b : set X) : x ∈ a ∪ b = (x ∈ a ∨ x ∈ b) := rfl + +theorem union_self (a : set X) : a ∪ a = a := setext (take x, !or_self) -theorem union_empty (a : set T) : a ∪ ∅ = a := +theorem union_empty (a : set X) : a ∪ ∅ = a := setext (take x, !or_false) -theorem empty_union (a : set T) : ∅ ∪ a = a := +theorem empty_union (a : set X) : ∅ ∪ a = a := setext (take x, !false_or) -theorem union.comm (a b : set T) : a ∪ b = b ∪ a := +theorem union.comm (a b : set X) : a ∪ b = b ∪ a := setext (take x, or.comm) -theorem union_assoc (a b c : set T) : (a ∪ b) ∪ c = a ∪ (b ∪ c) := +theorem union_assoc (a b c : set X) : (a ∪ b) ∪ c = a ∪ (b ∪ c) := setext (take x, or.assoc) +/- intersection -/ + +definition inter [reducible] (a b : set X) : set X := λx, x ∈ a ∧ x ∈ b +notation a ∩ b := inter a b + +theorem mem_inter (x : X) (a b : set X) : x ∈ a ∩ b ↔ x ∈ a ∧ x ∈ b := !iff.refl + +theorem mem_inter_eq (x : X) (a b : set X) : x ∈ a ∩ b = (x ∈ a ∧ x ∈ b) := rfl + +theorem inter_self (a : set X) : a ∩ a = a := +setext (take x, !and_self) + +theorem inter_empty (a : set X) : a ∩ ∅ = ∅ := +setext (take x, !and_false) + +theorem empty_inter (a : set X) : ∅ ∩ a = ∅ := +setext (take x, !false_and) + +theorem inter.comm (a b : set X) : a ∩ b = b ∩ a := +setext (take x, !and.comm) + +theorem inter.assoc (a b c : set X) : (a ∩ b) ∩ c = a ∩ (b ∩ c) := +setext (take x, !and.assoc) + +/- distributivity laws -/ + +theorem inter.distrib_left (s t u : set X) : s ∩ (t ∪ u) = (s ∩ t) ∪ (s ∩ u) := +setext (take x, !and.distrib_left) + +theorem inter.distrib_right (s t u : set X) : (s ∪ t) ∩ u = (s ∩ u) ∪ (t ∩ u) := +setext (take x, !and.distrib_right) + +theorem union.distrib_left (s t u : set X) : s ∪ (t ∩ u) = (s ∪ t) ∩ (s ∪ u) := +setext (take x, !or.distrib_left) + +theorem union.distrib_right (s t u : set X) : (s ∩ t) ∪ u = (s ∪ u) ∩ (t ∪ u) := +setext (take x, !or.distrib_right) + /- set-builder notation -/ --- {x : T | P} -definition set_of (P : T → Prop) : set T := P +-- {x : X | P} +definition set_of (P : X → Prop) : set X := P notation `{` binders `|` r:(scoped:1 P, set_of P) `}` := r +-- {x ∈ s | P} +definition filter (P : X → Prop) (s : set X) : set X := λx, x ∈ s ∧ P x +notation `{` binders ∈ s `|` r:(scoped:1 p, filter p s) `}` := r + -- {[x, y, z]} or ⦃x, y, z⦄ -definition insert (x : T) (a : set T) : set T := {y : T | y = x ∨ y ∈ a} +definition insert (x : X) (a : set X) : set X := {y : X | y = x ∨ y ∈ a} notation `{[`:max a:(foldr `,` (x b, insert x b) ∅) `]}`:0 := a notation `⦃` a:(foldr `,` (x b, insert x b) ∅) `⦄` := a +/- set difference -/ + +definition diff (s t : set X) : set X := {x ∈ s | x ∉ t} +infix `\`:70 := diff + +theorem mem_of_mem_diff {s t : set X} {x : X} (H : x ∈ s \ t) : x ∈ s := +and.left H + +theorem not_mem_of_mem_diff {s t : set X} {x : X} (H : x ∈ s \ t) : x ∉ t := +and.right H + +theorem mem_diff {s t : set X} {x : X} (H1 : x ∈ s) (H2 : x ∉ t) : x ∈ s \ t := +and.intro H1 H2 + +theorem mem_diff_iff (s t : set X) (x : X) : x ∈ s \ t ↔ x ∈ s ∧ x ∉ t := !iff.refl + +theorem mem_diff_eq (s t : set X) (x : X) : x ∈ s \ t = (x ∈ s ∧ x ∉ t) := rfl + /- large unions -/ section variables {I : Type} variable a : set I - variable b : I → set T - variable C : set (set T) + variable b : I → set X + variable C : set (set X) - definition Inter : set T := {x : T | ∀i, x ∈ b i} - definition bInter : set T := {x : T | ∀₀ i ∈ a, x ∈ b i} - definition sInter : set T := {x : T | ∀₀ c ∈ C, x ∈ c} - definition Union : set T := {x : T | ∃i, x ∈ b i} - definition bUnion : set T := {x : T | ∃₀ i ∈ a, x ∈ b i} - definition sUnion : set T := {x : T | ∃₀ c ∈ C, x ∈ c} + definition Inter : set X := {x : X | ∀i, x ∈ b i} + definition bInter : set X := {x : X | ∀₀ i ∈ a, x ∈ b i} + definition sInter : set X := {x : X | ∀₀ c ∈ C, x ∈ c} + definition Union : set X := {x : X | ∃i, x ∈ b i} + definition bUnion : set X := {x : X | ∃₀ i ∈ a, x ∈ b i} + definition sUnion : set X := {x : X | ∃₀ c ∈ C, x ∈ c} -- TODO: need notation for these end