fix(algebra/ordered_field, analysis/real_limit): generalize theorem to ordered fields
This commit is contained in:
parent
f402f322aa
commit
a675a5ede2
2 changed files with 19 additions and 19 deletions
|
@ -549,4 +549,22 @@ section discrete_linear_ordered_field
|
|||
... = ((a * 2) / 2) / 2 : by rewrite -div_div_eq_div_mul
|
||||
... = a / 2 : by rewrite (mul_div_cancel a two_ne_zero)
|
||||
|
||||
lemma div_two_add_div_four_lt {a : A} (H : a > 0) : a / 2 + a / 4 < a :=
|
||||
begin
|
||||
replace (4 : A) with (2 : A) + 2,
|
||||
have Hne : (2 + 2 : A) ≠ 0, from ne_of_gt four_pos,
|
||||
krewrite (div_add_div _ _ two_ne_zero Hne),
|
||||
have Hnum : (2 + 2 + 2) / (2 * (2 + 2)) = (3 : A) / 4, by norm_num,
|
||||
rewrite [{2 * a}mul.comm, -left_distrib, mul_div_assoc, -mul_one a at {2}], krewrite Hnum,
|
||||
apply mul_lt_mul_of_pos_left,
|
||||
apply div_lt_of_mul_lt_of_pos,
|
||||
apply four_pos,
|
||||
rewrite one_mul,
|
||||
replace (3 : A) with (2 : A) + 1,
|
||||
replace (4 : A) with (2 : A) + 2,
|
||||
apply add_lt_add_left,
|
||||
apply two_gt_one,
|
||||
exact H
|
||||
end
|
||||
|
||||
end discrete_linear_ordered_field
|
||||
|
|
|
@ -263,24 +263,6 @@ proposition mul_right_converges_to_seq (c : ℝ) (HX : X ⟶ x in ℕ) :
|
|||
have (λ n, X n * c) = (λ n, c * X n), from funext (take x, !mul.comm),
|
||||
by+ rewrite [this, mul.comm]; apply mul_left_converges_to_seq c HX
|
||||
|
||||
protected lemma add_half_quarter {a : ℝ} (H : a > 0) : a / 2 + a / 4 < a :=
|
||||
begin
|
||||
replace (4 : ℝ) with (2 : ℝ) + 2,
|
||||
have Hne : (2 + 2 : ℝ) ≠ 0, from ne_of_gt four_pos,
|
||||
krewrite (div_add_div _ _ two_ne_zero Hne),
|
||||
have Hnum : (2 + 2 + 2) / (2 * (2 + 2)) = (3 : ℝ) / 4, by norm_num,
|
||||
rewrite [{2 * a}mul.comm, -left_distrib, mul_div_assoc, -mul_one a at {2}], krewrite Hnum,
|
||||
apply mul_lt_mul_of_pos_left,
|
||||
apply div_lt_of_mul_lt_of_pos,
|
||||
apply four_pos,
|
||||
rewrite one_mul,
|
||||
replace (3 : ℝ) with (2 : ℝ) + 1,
|
||||
replace (4 : ℝ) with (2 : ℝ) + 2,
|
||||
apply add_lt_add_left,
|
||||
apply two_gt_one,
|
||||
exact H
|
||||
end
|
||||
|
||||
theorem converges_to_seq_squeeze (HX : X ⟶ x in ℕ) (HY : Y ⟶ x in ℕ) {Z : ℕ → ℝ} (HZX : ∀ n, X n ≤ Z n)
|
||||
(HZY : ∀ n, Z n ≤ Y n) : Z ⟶ x in ℕ :=
|
||||
begin
|
||||
|
@ -320,7 +302,7 @@ theorem converges_to_seq_squeeze (HX : X ⟶ x in ℕ) (HY : Y ⟶ x in ℕ) {Z
|
|||
apply HZX,
|
||||
apply HN1,
|
||||
apply ge.trans Hn !le_max_left,
|
||||
apply add_half_quarter Hε
|
||||
apply div_two_add_div_four_lt Hε
|
||||
end,
|
||||
exact H
|
||||
end
|
||||
|
|
Loading…
Reference in a new issue