feat(library/tactic/inversion_tactic): basic 'inversion' tactic

This commit is contained in:
Leonardo de Moura 2014-11-28 21:56:13 -08:00
parent 366bf70ccd
commit a6be460166
3 changed files with 256 additions and 17 deletions

View file

@ -4,6 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
Author: Leonardo de Moura
*/
#include "util/sstream.h"
#include "kernel/abstract.h"
#include "kernel/instantiate.h"
#include "kernel/inductive/inductive.h"
@ -72,7 +73,7 @@ class inversion_tac {
g.get_hyps(hyps);
expr m = g.get_meta();
expr m_type = g.get_type();
name h_new_name = g.get_unused_name(local_pp_name(h));
name h_new_name = get_unused_name(local_pp_name(h), hyps);
buffer<expr> I_args;
expr const & I = get_app_args(h_type, I_args);
expr h_new_type = mk_app(I, I_args.size() - m_nindices, I_args.data());
@ -206,6 +207,197 @@ class inversion_tac {
return to_list(new_gs.begin(), new_gs.end());
}
struct inversion_exception : public exception {
inversion_exception(char const * msg):exception(msg) {}
inversion_exception(sstream const & strm):exception(strm) {}
};
[[ noreturn ]] void throw_ill_formed_goal() {
throw inversion_exception("ill-formed goal");
}
[[ noreturn ]] void throw_ill_typed_goal() {
throw inversion_exception("ill-typed goal");
}
goal intro_next_eq(goal const & g) {
expr const & type = g.get_type();
if (!is_pi(type))
throw_ill_formed_goal();
expr eq = binding_domain(type);
expr const & eq_fn = get_app_fn(eq);
if (!is_constant(eq_fn))
throw_ill_formed_goal();
buffer<expr> hyps;
g.get_hyps(hyps);
if (const_name(eq_fn) == "eq") {
expr new_hyp = mk_local(m_ngen.next(), g.get_unused_name(binding_name(type)), binding_domain(type), binder_info());
expr new_type = instantiate(binding_body(type), new_hyp);
hyps.push_back(new_hyp);
expr new_meta = mk_app(mk_metavar(m_ngen.next(), Pi(hyps, new_type)), hyps);
goal new_g(new_meta, new_type);
expr val = g.abstract(Fun(new_hyp, new_meta));
m_subst.assign(g.get_name(), val);
return new_g;
} else if (const_name(eq_fn) == "heq") {
buffer<expr> args;
expr const & heq_fn = get_app_args(eq, args);
constraint_seq cs;
if (m_tc->is_def_eq(args[0], args[2], justification(), cs) && !cs) {
expr new_eq = mk_app(mk_constant("eq", const_levels(heq_fn)), args[0], args[1], args[3]);
expr new_hyp = mk_local(m_ngen.next(), g.get_unused_name(binding_name(type)), new_eq, binder_info());
expr new_type = instantiate(binding_body(type), new_hyp);
hyps.push_back(new_hyp);
expr new_mvar = mk_metavar(m_ngen.next(), Pi(hyps, new_type));
expr new_meta = mk_app(new_mvar, hyps);
goal new_g(new_meta, new_type);
hyps.pop_back();
expr H = mk_local(m_ngen.next(), g.get_unused_name(binding_name(type)), binding_domain(type), binder_info());
expr to_eq = mk_app(mk_constant({"heq", "to_eq"}, const_levels(heq_fn)), args[0], args[1], args[3], H);
expr val = g.abstract(Fun(H, mk_app(mk_app(new_mvar, hyps), to_eq)));
m_subst.assign(g.get_name(), val);
return new_g;
} else {
throw inversion_exception("unification failed to reduce heterogeneous equality into homogeneous one");
}
} else {
throw_ill_formed_goal();
}
}
goal clear_eq(goal g) {
// TODO(Leo): delete last hypothesis
return g;
}
// Split hyps into two "telescopes".
// - non_deps : hypotheses that do not depend on rhs
// - deps : hypotheses that depend on rhs (directly or indirectly)
void split_deps(buffer<expr> const & hyps, expr const & rhs, buffer<expr> & non_deps, buffer<expr> & deps) {
for (expr const & hyp : hyps) {
expr const & hyp_type = mlocal_type(hyp);
if (depends_on(hyp_type, rhs) || std::any_of(deps.begin(), deps.end(), [&](expr const & dep) { return depends_on(hyp_type, dep); })) {
deps.push_back(hyp);
} else {
non_deps.push_back(hyp);
}
}
}
optional<goal> unify_eqs(goal g, unsigned neqs) {
if (neqs == 0)
return optional<goal>(g); // done
g = intro_next_eq(g);
buffer<expr> hyps;
g.get_hyps(hyps);
lean_assert(!hyps.empty());
expr const & eq = hyps.back();
buffer<expr> eq_args;
get_app_args(mlocal_type(eq), eq_args);
expr const & A = m_tc->whnf(eq_args[0]).first;
expr lhs = m_tc->whnf(eq_args[1]).first;
expr rhs = m_tc->whnf(eq_args[2]).first;
constraint_seq cs;
if (m_tc->is_def_eq(lhs, rhs, justification(), cs) && !cs) {
// deletion transition: t == t
return unify_eqs(clear_eq(g), neqs-1);
}
buffer<expr> lhs_args, rhs_args;
expr const & lhs_fn = get_app_args(lhs, lhs_args);
expr const & rhs_fn = get_app_args(rhs, rhs_args);
expr const & g_type = g.get_type();
level const & g_lvl = sort_level(m_tc->ensure_type(g_type).first);
if (is_constant(lhs_fn) &&
is_constant(rhs_fn) &&
inductive::is_intro_rule(m_env, const_name(lhs_fn)) &&
inductive::is_intro_rule(m_env, const_name(rhs_fn))) {
buffer<expr> A_args;
expr const & A_fn = get_app_args(A, A_args);
if (!is_constant(A_fn) || !inductive::is_inductive_decl(m_env, const_name(A_fn)))
throw_ill_typed_goal();
name no_confusion_name(const_name(A_fn), "no_confusion");
if (!m_env.find(no_confusion_name))
throw inversion_exception(sstream() << "construction '" << no_confusion_name << "' is not available in the environment");
expr no_confusion = mk_app(mk_app(mk_constant(no_confusion_name, cons(g_lvl, const_levels(A_fn))), A_args), g_type, lhs, rhs, eq);
if (const_name(lhs_fn) == const_name(rhs_fn)) {
// injectivity transition
expr new_type = binding_domain(m_tc->whnf(m_tc->infer(no_confusion).first).first);
hyps.pop_back(); // remove processed equality
expr new_mvar = mk_metavar(m_ngen.next(), Pi(hyps, new_type));
expr new_meta = mk_app(new_mvar, hyps);
goal new_g(new_meta, new_type);
expr val = g.abstract(mk_app(no_confusion, new_meta));
m_subst.assign(g.get_name(), val);
lean_assert(lhs_args.size() >= m_nparams);
return unify_eqs(new_g, neqs - 1 + lhs_args.size() - m_nparams);
} else {
// conflict transition, eq is of the form c_1 ... = c_2 ..., where c_1 and c_2 are different constructors/intro rules.
expr val = g.abstract(no_confusion);
m_subst.assign(g.get_name(), val);
return optional<goal>(); // goal has been solved
}
}
if (is_local(rhs)) {
// solution transition, eq is of the form t = y, where y is a local constant
// assume the current goal is of the form
//
// non_deps, deps[rhs], H : lhs = rhs |- C[rhs]
//
// We use non_deps to denote hypotheses that do not depend on rhs,
// and deps[rhs] to denote hypotheses that depend on it.
//
// The resultant goal is of the form
//
// non_deps, deps[lhs] |- C[lhs]
//
// Now, assume ?m1 is a solution for the resultant goal.
// Then,
//
// @eq.rec A lhs (fun rhs, Pi(deps[rhs], C[rhs])) (?m1 non_deps) rhs H deps[rhs]
//
// is a solution for the original goal.
// Remark: A is the type of lhs and rhs
hyps.pop_back(); // remove processed equality
buffer<expr> non_deps, deps;
split_deps(hyps, rhs, non_deps, deps);
expr deps_g_type = Pi(deps, g_type);
level eq_rec_lvl1 = sort_level(m_tc->ensure_type(deps_g_type).first);
level eq_rec_lvl2 = sort_level(m_tc->ensure_type(A).first);
expr tformer = Fun(rhs, deps_g_type);
expr eq_rec = mk_constant(name{"eq", "rec"}, {eq_rec_lvl1, eq_rec_lvl2});
eq_rec = mk_app(eq_rec, A, lhs, tformer);
buffer<expr> new_hyps;
new_hyps.append(non_deps);
expr new_type = instantiate(abstract(deps_g_type, rhs), lhs);
for (unsigned i = 0; i < deps.size(); i++) {
expr new_hyp = mk_local(m_ngen.next(), binding_name(new_type), binding_domain(new_type), binding_info(new_type));
new_hyps.push_back(new_hyp);
new_type = instantiate(binding_body(new_type), new_hyp);
}
expr new_mvar = mk_metavar(m_ngen.next(), Pi(new_hyps, new_type));
expr new_meta = mk_app(new_mvar, new_hyps);
goal new_g(new_meta, new_type);
expr eq_rec_minor = mk_app(new_mvar, non_deps);
eq_rec = mk_app(eq_rec, eq_rec_minor, rhs, eq);
expr val = g.abstract(mk_app(eq_rec, deps));
m_subst.assign(g.get_name(), val);
return unify_eqs(new_g, neqs-1);
}
// unification failed
return optional<goal>(g);
}
list<goal> unify_eqs(list<goal> const & gs) {
unsigned neqs = m_nindices + (m_dep_elim ? 1 : 0);
buffer<goal> new_goals;
for (goal const & g : gs) {
if (optional<goal> new_g = unify_eqs(g, neqs))
new_goals.push_back(*new_g);
}
return to_list(new_goals.begin(), new_goals.end());
}
public:
inversion_tac(environment const & env, io_state const & ios, proof_state const & ps):
m_env(env), m_ios(ios), m_ps(ps),
@ -214,23 +406,28 @@ public:
}
optional<proof_state> execute(name const & n) {
goals const & gs = m_ps.get_goals();
if (empty(gs))
try {
goals const & gs = m_ps.get_goals();
if (empty(gs))
return none_proof_state();
goal g = head(gs);
goals tail_gs = tail(gs);
auto p = g.find_hyp(n);
if (!p)
return none_proof_state();
expr const & h = p->first;
expr h_type = m_tc->whnf(mlocal_type(h)).first;
if (!is_inversion_applicable(h_type))
return none_proof_state();
goal g1 = generalize_indices(g, h, h_type);
list<goal> gs2 = apply_cases_on(g1);
list<goal> gs3 = intros_minors_args(gs2);
list<goal> gs4 = unify_eqs(gs3);
proof_state new_s(m_ps, append(gs4, tail_gs), m_subst, m_ngen);
return some_proof_state(new_s);
} catch (inversion_exception & ex) {
return none_proof_state();
goal g = head(gs);
goals tail_gs = tail(gs);
auto p = g.find_hyp(n);
if (!p)
return none_proof_state();
expr const & h = p->first;
expr h_type = m_tc->whnf(mlocal_type(h)).first;
if (!is_inversion_applicable(h_type))
return none_proof_state();
goal g1 = generalize_indices(g, h, h_type);
list<goal> gs2 = apply_cases_on(g1);
list<goal> gs3 = intros_minors_args(gs2);
proof_state new_s(m_ps, append(gs3, tail_gs), m_subst, m_ngen);
return some_proof_state(new_s);
}
}
};

View file

@ -0,0 +1,22 @@
import logic data.nat.basic
open nat
inductive inftree (A : Type) : Type :=
leaf : A → inftree A,
node : (nat → inftree A) → inftree A → inftree A
namespace inftree
inductive dsub {A : Type} : inftree A → inftree A → Prop :=
intro₁ : Π (f : nat → inftree A) (a : nat) (t : inftree A), dsub (f a) (node f t),
intro₂ : Π (f : nat → inftree A) (t : inftree A), dsub t (node f t)
definition dsub.node.acc {A : Type} (f : nat → inftree A) (hf : ∀a, acc dsub (f a))
(t : inftree A) (ht : acc dsub t) : acc dsub (node f t) :=
acc.intro (node f t) (λ (y : inftree A) (hlt : dsub y (node f t)),
begin
inversion hlt,
apply (hf a),
apply ht
end)
end inftree

View file

@ -0,0 +1,20 @@
import data.fin
open nat
namespace fin
definition z_cases_on2 (C : fin zero → Type) (p : fin zero) : C p :=
by cases p
definition nz_cases_on2 {C : Π n, fin (succ n) → Type}
(H₁ : Π n, C n (fz n))
(H₂ : Π n (f : fin n), C n (fs f))
{n : nat}
(f : fin (succ n)) : C n f :=
begin
cases f,
apply (H₁ n_1),
apply (H₂ n_1 a)
end
end fin