diff --git a/hott/types/equiv.hlean b/hott/types/equiv.hlean index 8b049fd57..5c850e995 100644 --- a/hott/types/equiv.hlean +++ b/hott/types/equiv.hlean @@ -22,7 +22,7 @@ namespace is_equiv definition is_contr_fiber_of_is_equiv (b : B) : is_contr (fiber f b) := is_contr.mk (fiber.mk (f⁻¹ b) (retr f b)) - (λz, fiber.rec_on z (λa p, fiber.eq_mk ((ap f⁻¹ p)⁻¹ ⬝ sect f a) (calc + (λz, fiber.rec_on z (λa p, fiber_eq ((ap f⁻¹ p)⁻¹ ⬝ sect f a) (calc retr f b = (ap (f ∘ f⁻¹) p)⁻¹ ⬝ ((ap (f ∘ f⁻¹) p) ⬝ retr f b) : by rewrite inv_con_cancel_left ... = (ap (f ∘ f⁻¹) p)⁻¹ ⬝ (retr f (f a) ⬝ p) : by rewrite ap_con_eq_con ... = (ap (f ∘ f⁻¹) p)⁻¹ ⬝ (ap f (sect f a) ⬝ p) : by rewrite adj diff --git a/hott/types/fiber.hlean b/hott/types/fiber.hlean index 0658f0ae5..7f3572a14 100644 --- a/hott/types/fiber.hlean +++ b/hott/types/fiber.hlean @@ -1,5 +1,5 @@ /- -Copyright (c) 2014 Floris van Doorn. All rights reserved. +Copyright (c) 2015 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Module: types.fiber @@ -9,7 +9,7 @@ Ported from Coq HoTT Theorems about fibers -/ -import types.sigma types.eq +import .sigma .eq structure fiber {A B : Type} (f : A → B) (b : B) := (point : A) @@ -44,8 +44,8 @@ namespace fiber {apply (ap (λx, x = _)), rewrite transport_eq_Fl} end - definition eq_mk {x y : fiber f b} (p : point x = point y) (q : point_eq x = ap f p ⬝ point_eq y) - : x = y := + definition fiber_eq {x y : fiber f b} (p : point x = point y) + (q : point_eq x = ap f p ⬝ point_eq y) : x = y := to_inv !equiv_fiber_eq ⟨p, q⟩ end fiber diff --git a/hott/types/pi.hlean b/hott/types/pi.hlean index 3d69832e0..040d60f4e 100644 --- a/hott/types/pi.hlean +++ b/hott/types/pi.hlean @@ -57,9 +57,9 @@ namespace pi /- A special case of [transport_pi] where the type [B] does not depend on [A], and so it is just a fixed type [B]. -/ - definition pi_transport_constant {C : A → A' → Type} (p : a = a') (f : Π(b : A'), C a b) - : Π(b : A'), (transport (λa, Π(b : A'), C a b) p f) b = transport (λa, C a b) p (f b) := - eq.rec_on p (λx, idp) + definition pi_transport_constant {C : A → A' → Type} (p : a = a') (f : Π(b : A'), C a b) (b : A') + : (transport (λa, Π(b : A'), C a b) p f) b = transport (λa, C a b) p (f b) := + eq.rec_on p idp /- Maps on paths -/ diff --git a/hott/types/sigma.hlean b/hott/types/sigma.hlean index 09d49d47e..a516a9d47 100644 --- a/hott/types/sigma.hlean +++ b/hott/types/sigma.hlean @@ -200,7 +200,7 @@ namespace sigma -- "rewrite retr (g (f⁻¹ a'))" apply concat, apply (ap (λx, (transport B' (retr f a') x))), apply (retr (g (f⁻¹ a'))), show retr f a' ▹ ((retr f a')⁻¹ ▹ b') = b', - from tr_inv_tr B' (retr f a') b' + from tr_inv_tr _ (retr f a') b' end begin intro u,