feat(library/definitional/rec_on): automatically generate rec_on function for inductive datatypes
This commit is contained in:
parent
7240a1a640
commit
a7a06ab0f8
28 changed files with 155 additions and 105 deletions
|
@ -10,9 +10,6 @@ inductive bool : Type :=
|
||||||
ff : bool,
|
ff : bool,
|
||||||
tt : bool
|
tt : bool
|
||||||
namespace bool
|
namespace bool
|
||||||
protected definition rec_on {C : bool → Type} (b : bool) (H₁ : C ff) (H₂ : C tt) : C b :=
|
|
||||||
rec H₁ H₂ b
|
|
||||||
|
|
||||||
protected definition cases_on {p : bool → Prop} (b : bool) (H₁ : p ff) (H₂ : p tt) : p b :=
|
protected definition cases_on {p : bool → Prop} (b : bool) (H₁ : p ff) (H₂ : p tt) : p b :=
|
||||||
rec H₁ H₂ b
|
rec H₁ H₂ b
|
||||||
|
|
||||||
|
|
|
@ -29,10 +29,6 @@ protected theorem cases_on {P : list T → Prop} (l : list T) (Hnil : P nil)
|
||||||
(Hcons : ∀ (x : T) (l : list T), P (x::l)) : P l :=
|
(Hcons : ∀ (x : T) (l : list T), P (x::l)) : P l :=
|
||||||
induction_on l Hnil (take x l IH, Hcons x l)
|
induction_on l Hnil (take x l IH, Hcons x l)
|
||||||
|
|
||||||
protected definition rec_on {A : Type} {C : list A → Type} (l : list A)
|
|
||||||
(H1 : C nil) (H2 : Π (h : A) (t : list A), C t → C (h::t)) : C l :=
|
|
||||||
rec H1 H2 l
|
|
||||||
|
|
||||||
-- Concat
|
-- Concat
|
||||||
-- ------
|
-- ------
|
||||||
|
|
||||||
|
|
|
@ -34,9 +34,6 @@ protected theorem induction_on {P : ℕ → Prop} (a : ℕ) (H1 : P zero) (H2 :
|
||||||
P a :=
|
P a :=
|
||||||
nat.rec H1 H2 a
|
nat.rec H1 H2 a
|
||||||
|
|
||||||
protected definition rec_on {P : ℕ → Type} (n : ℕ) (H1 : P zero) (H2 : ∀m, P m → P (succ m)) : P n :=
|
|
||||||
nat.rec H1 H2 n
|
|
||||||
|
|
||||||
protected definition is_inhabited [instance] : inhabited nat :=
|
protected definition is_inhabited [instance] : inhabited nat :=
|
||||||
inhabited.mk zero
|
inhabited.mk zero
|
||||||
|
|
||||||
|
|
|
@ -22,10 +22,6 @@ namespace pos_num
|
||||||
(H₁ : P one) (H₂ : ∀ (n : pos_num), P n → P (bit1 n)) (H₃ : ∀ (n : pos_num), P n → P (bit0 n)) : P a :=
|
(H₁ : P one) (H₂ : ∀ (n : pos_num), P n → P (bit1 n)) (H₃ : ∀ (n : pos_num), P n → P (bit0 n)) : P a :=
|
||||||
rec H₁ H₂ H₃ a
|
rec H₁ H₂ H₃ a
|
||||||
|
|
||||||
protected definition rec_on {P : pos_num → Type} (a : pos_num)
|
|
||||||
(H₁ : P one) (H₂ : ∀ (n : pos_num), P n → P (bit1 n)) (H₃ : ∀ (n : pos_num), P n → P (bit0 n)) : P a :=
|
|
||||||
rec H₁ H₂ H₃ a
|
|
||||||
|
|
||||||
definition succ (a : pos_num) : pos_num :=
|
definition succ (a : pos_num) : pos_num :=
|
||||||
rec_on a (bit0 one) (λn r, bit0 r) (λn r, bit1 n)
|
rec_on a (bit0 one) (λn r, bit0 r) (λn r, bit1 n)
|
||||||
|
|
||||||
|
@ -133,10 +129,6 @@ namespace num
|
||||||
(H₁ : P zero) (H₂ : ∀ (p : pos_num), P (pos p)) : P a :=
|
(H₁ : P zero) (H₂ : ∀ (p : pos_num), P (pos p)) : P a :=
|
||||||
rec H₁ H₂ a
|
rec H₁ H₂ a
|
||||||
|
|
||||||
protected definition rec_on {P : num → Type} (a : num)
|
|
||||||
(H₁ : P zero) (H₂ : ∀ (p : pos_num), P (pos p)) : P a :=
|
|
||||||
rec H₁ H₂ a
|
|
||||||
|
|
||||||
definition succ (a : num) : num :=
|
definition succ (a : num) : num :=
|
||||||
rec_on a (pos one) (λp, pos (succ p))
|
rec_on a (pos one) (λp, pos (succ p))
|
||||||
|
|
||||||
|
|
|
@ -14,10 +14,6 @@ namespace option
|
||||||
(H1 : p none) (H2 : ∀a, p (some a)) : p o :=
|
(H1 : p none) (H2 : ∀a, p (some a)) : p o :=
|
||||||
rec H1 H2 o
|
rec H1 H2 o
|
||||||
|
|
||||||
protected definition rec_on {A : Type} {C : option A → Type} (o : option A)
|
|
||||||
(H1 : C none) (H2 : ∀a, C (some a)) : C o :=
|
|
||||||
rec H1 H2 o
|
|
||||||
|
|
||||||
definition is_none {A : Type} (o : option A) : Prop :=
|
definition is_none {A : Type} (o : option A) : Prop :=
|
||||||
rec true (λ a, false) o
|
rec true (λ a, false) o
|
||||||
|
|
||||||
|
|
|
@ -115,17 +115,17 @@ R_intro Q Ha Hc Hac
|
||||||
|
|
||||||
definition rec {A B : Type} {R : A → A → Prop} {abs : A → B} {rep : B → A}
|
definition rec {A B : Type} {R : A → A → Prop} {abs : A → B} {rep : B → A}
|
||||||
(Q : is_quotient R abs rep) {C : B → Type} (f : forall (a : A), C (abs a)) (b : B) : C b :=
|
(Q : is_quotient R abs rep) {C : B → Type} (f : forall (a : A), C (abs a)) (b : B) : C b :=
|
||||||
eq.rec_on (abs_rep Q b) (f (rep b))
|
eq.drec_on (abs_rep Q b) (f (rep b))
|
||||||
|
|
||||||
theorem comp {A B : Type} {R : A → A → Prop} {abs : A → B} {rep : B → A}
|
theorem comp {A B : Type} {R : A → A → Prop} {abs : A → B} {rep : B → A}
|
||||||
(Q : is_quotient R abs rep) {C : B → Type} {f : forall (a : A), C (abs a)}
|
(Q : is_quotient R abs rep) {C : B → Type} {f : forall (a : A), C (abs a)}
|
||||||
(H : forall (r s : A) (H' : R r s), eq.rec_on (eq_abs Q H') (f r) = f s)
|
(H : forall (r s : A) (H' : R r s), eq.drec_on (eq_abs Q H') (f r) = f s)
|
||||||
{a : A} (Ha : R a a) : rec Q f (abs a) = f a :=
|
{a : A} (Ha : R a a) : rec Q f (abs a) = f a :=
|
||||||
have H2 [visible] : R a (rep (abs a)), from R_rep_abs Q Ha,
|
have H2 [visible] : R a (rep (abs a)), from R_rep_abs Q Ha,
|
||||||
calc
|
calc
|
||||||
rec Q f (abs a) = eq.rec_on _ (f (rep (abs a))) : rfl
|
rec Q f (abs a) = eq.drec_on _ (f (rep (abs a))) : rfl
|
||||||
... = eq.rec_on _ (eq.rec_on _ (f a)) : {(H _ _ H2)⁻¹}
|
... = eq.drec_on _ (eq.drec_on _ (f a)) : {(H _ _ H2)⁻¹}
|
||||||
... = eq.rec_on _ (f a) : eq.rec_on_compose (eq_abs Q H2) _ _
|
... = eq.drec_on _ (f a) : eq.rec_on_compose (eq_abs Q H2) _ _
|
||||||
... = f a : eq.rec_on_id (eq.trans (eq_abs Q H2) (abs_rep Q (abs a))) _
|
... = f a : eq.rec_on_id (eq.trans (eq_abs Q H2) (abs_rep Q (abs a))) _
|
||||||
|
|
||||||
definition rec_constant {A B : Type} {R : A → A → Prop} {abs : A → B} {rep : B → A}
|
definition rec_constant {A B : Type} {R : A → A → Prop} {abs : A → B} {rep : B → A}
|
||||||
|
|
|
@ -25,12 +25,12 @@ namespace sigma
|
||||||
theorem dpair_ext (p : sigma B) : dpair (dpr1 p) (dpr2 p) = p :=
|
theorem dpair_ext (p : sigma B) : dpair (dpr1 p) (dpr2 p) = p :=
|
||||||
destruct p (take a b, rfl)
|
destruct p (take a b, rfl)
|
||||||
|
|
||||||
theorem dpair_eq {a₁ a₂ : A} {b₁ : B a₁} {b₂ : B a₂} (H₁ : a₁ = a₂) (H₂ : eq.rec_on H₁ b₁ = b₂) :
|
theorem dpair_eq {a₁ a₂ : A} {b₁ : B a₁} {b₂ : B a₂} (H₁ : a₁ = a₂) (H₂ : eq.drec_on H₁ b₁ = b₂) :
|
||||||
dpair a₁ b₁ = dpair a₂ b₂ :=
|
dpair a₁ b₁ = dpair a₂ b₂ :=
|
||||||
congr_arg2_dep dpair H₁ H₂
|
congr_arg2_dep dpair H₁ H₂
|
||||||
|
|
||||||
protected theorem equal {p₁ p₂ : Σx : A, B x} :
|
protected theorem equal {p₁ p₂ : Σx : A, B x} :
|
||||||
∀(H₁ : dpr1 p₁ = dpr1 p₂) (H₂ : eq.rec_on H₁ (dpr2 p₁) = dpr2 p₂), p₁ = p₂ :=
|
∀(H₁ : dpr1 p₁ = dpr1 p₂) (H₂ : eq.drec_on H₁ (dpr2 p₁) = dpr2 p₂), p₁ = p₂ :=
|
||||||
destruct p₁ (take a₁ b₁, destruct p₂ (take a₂ b₂ H₁ H₂, dpair_eq H₁ H₂))
|
destruct p₁ (take a₁ b₁, destruct p₂ (take a₂ b₂ H₁ H₂, dpair_eq H₁ H₂))
|
||||||
|
|
||||||
protected definition is_inhabited [instance] (H₁ : inhabited A) (H₂ : inhabited (B (default A))) :
|
protected definition is_inhabited [instance] (H₁ : inhabited A) (H₂ : inhabited (B (default A))) :
|
||||||
|
@ -49,19 +49,19 @@ namespace sigma
|
||||||
definition dpr4 (x : Σ a b c, D a b c) := dpr2 (dpr2 (dpr2 x))
|
definition dpr4 (x : Σ a b c, D a b c) := dpr2 (dpr2 (dpr2 x))
|
||||||
|
|
||||||
theorem dtrip_eq {a₁ a₂ : A} {b₁ : B a₁} {b₂ : B a₂} {c₁ : C a₁ b₁} {c₂ : C a₂ b₂}
|
theorem dtrip_eq {a₁ a₂ : A} {b₁ : B a₁} {b₂ : B a₂} {c₁ : C a₁ b₁} {c₂ : C a₂ b₂}
|
||||||
(H₁ : a₁ = a₂) (H₂ : eq.rec_on H₁ b₁ = b₂) (H₃ : eq.rec_on (congr_arg2_dep C H₁ H₂) c₁ = c₂) :
|
(H₁ : a₁ = a₂) (H₂ : eq.drec_on H₁ b₁ = b₂) (H₃ : eq.drec_on (congr_arg2_dep C H₁ H₂) c₁ = c₂) :
|
||||||
dtrip a₁ b₁ c₁ = dtrip a₂ b₂ c₂ :=
|
dtrip a₁ b₁ c₁ = dtrip a₂ b₂ c₂ :=
|
||||||
congr_arg3_dep dtrip H₁ H₂ H₃
|
congr_arg3_dep dtrip H₁ H₂ H₃
|
||||||
|
|
||||||
theorem dtrip_eq_ndep {A B : Type} {C : A → B → Type} {a₁ a₂ : A} {b₁ b₂ : B}
|
theorem dtrip_eq_ndep {A B : Type} {C : A → B → Type} {a₁ a₂ : A} {b₁ b₂ : B}
|
||||||
{c₁ : C a₁ b₁} {c₂ : C a₂ b₂} (H₁ : a₁ = a₂) (H₂ : b₁ = b₂)
|
{c₁ : C a₁ b₁} {c₂ : C a₂ b₂} (H₁ : a₁ = a₂) (H₂ : b₁ = b₂)
|
||||||
(H₃ : eq.rec_on (congr_arg2 C H₁ H₂) c₁ = c₂) :
|
(H₃ : eq.drec_on (congr_arg2 C H₁ H₂) c₁ = c₂) :
|
||||||
dtrip a₁ b₁ c₁ = dtrip a₂ b₂ c₂ :=
|
dtrip a₁ b₁ c₁ = dtrip a₂ b₂ c₂ :=
|
||||||
congr_arg3_ndep_dep dtrip H₁ H₂ H₃
|
congr_arg3_ndep_dep dtrip H₁ H₂ H₃
|
||||||
|
|
||||||
theorem trip.equal_ndep {A B : Type} {C : A → B → Type} {p₁ p₂ : Σa b, C a b} :
|
theorem trip.equal_ndep {A B : Type} {C : A → B → Type} {p₁ p₂ : Σa b, C a b} :
|
||||||
∀(H₁ : dpr1 p₁ = dpr1 p₂) (H₂ : dpr2' p₁ = dpr2' p₂)
|
∀(H₁ : dpr1 p₁ = dpr1 p₂) (H₂ : dpr2' p₁ = dpr2' p₂)
|
||||||
(H₃ : eq.rec_on (congr_arg2 C H₁ H₂) (dpr3 p₁) = dpr3 p₂), p₁ = p₂ :=
|
(H₃ : eq.drec_on (congr_arg2 C H₁ H₂) (dpr3 p₁) = dpr3 p₂), p₁ = p₂ :=
|
||||||
destruct p₁ (take a₁ q₁, destruct q₁ (take b₁ c₁, destruct p₂ (take a₂ q₂, destruct q₂
|
destruct p₁ (take a₁ q₁, destruct q₁ (take b₁ c₁, destruct p₂ (take a₂ q₂, destruct q₂
|
||||||
(take b₂ c₂ H₁ H₂ H₃, dtrip_eq_ndep H₁ H₂ H₃))))
|
(take b₂ c₂ H₁ H₂ H₃, dtrip_eq_ndep H₁ H₂ H₃))))
|
||||||
|
|
||||||
|
|
|
@ -20,9 +20,6 @@ namespace sum
|
||||||
|
|
||||||
variables {A B : Type}
|
variables {A B : Type}
|
||||||
variables {a a₁ a₂ : A} {b b₁ b₂ : B}
|
variables {a a₁ a₂ : A} {b b₁ b₂ : B}
|
||||||
protected definition rec_on {C : (A ⊎ B) → Type} (s : A ⊎ B) (H₁ : ∀a : A, C (inl B a)) (H₂ : ∀b : B, C (inr A b)) : C s :=
|
|
||||||
rec H₁ H₂ s
|
|
||||||
|
|
||||||
protected definition cases_on {P : (A ⊎ B) → Prop} (s : A ⊎ B) (H₁ : ∀a : A, P (inl B a)) (H₂ : ∀b : B, P (inr A b)) : P s :=
|
protected definition cases_on {P : (A ⊎ B) → Prop} (s : A ⊎ B) (H₁ : ∀a : A, P (inl B a)) (H₂ : ∀b : B, P (inr A b)) : P s :=
|
||||||
rec H₁ H₂ s
|
rec H₁ H₂ s
|
||||||
|
|
||||||
|
|
|
@ -15,10 +15,6 @@ namespace vector
|
||||||
section sc_vector
|
section sc_vector
|
||||||
variable {T : Type}
|
variable {T : Type}
|
||||||
|
|
||||||
protected theorem rec_on {C : ∀ (n : ℕ), vector T n → Type} {n : ℕ} (v : vector T n) (Hnil : C 0 nil)
|
|
||||||
(Hcons : ∀(x : T) {n : ℕ} (w : vector T n), C n w → C (succ n) (cons x w)) : C n v :=
|
|
||||||
rec Hnil Hcons v
|
|
||||||
|
|
||||||
protected theorem induction_on {C : ∀ (n : ℕ), vector T n → Prop} {n : ℕ} (v : vector T n) (Hnil : C 0 nil)
|
protected theorem induction_on {C : ∀ (n : ℕ), vector T n → Prop} {n : ℕ} (v : vector T n) (Hnil : C 0 nil)
|
||||||
(Hcons : ∀(x : T) {n : ℕ} (w : vector T n), C n w → C (succ n) (cons x w)) : C n v :=
|
(Hcons : ∀(x : T) {n : ℕ} (w : vector T n), C n w → C (succ n) (cons x w)) : C n v :=
|
||||||
rec_on v Hnil Hcons
|
rec_on v Hnil Hcons
|
||||||
|
|
|
@ -126,7 +126,7 @@ namespace IsEquiv
|
||||||
|
|
||||||
--TODO: Maybe wait until rewrite rules are available.
|
--TODO: Maybe wait until rewrite rules are available.
|
||||||
definition inv_closed (Hf : IsEquiv f) : (IsEquiv (inv Hf)) :=
|
definition inv_closed (Hf : IsEquiv f) : (IsEquiv (inv Hf)) :=
|
||||||
IsEquiv_mk sorry sorry sorry sorry
|
sorry -- IsEquiv_mk sorry sorry sorry sorry
|
||||||
|
|
||||||
definition cancel_R (Hf : IsEquiv f) (Hgf : IsEquiv (g ∘ f)) : (IsEquiv g) :=
|
definition cancel_R (Hf : IsEquiv f) (Hgf : IsEquiv (g ∘ f)) : (IsEquiv g) :=
|
||||||
homotopic (comp_closed (inv_closed Hf) Hgf) (λb, ap g (retr Hf b))
|
homotopic (comp_closed (inv_closed Hf) Hgf) (λb, ap g (retr Hf b))
|
||||||
|
|
|
@ -23,11 +23,11 @@ refl : heq a a
|
||||||
infixl `==`:50 := heq
|
infixl `==`:50 := heq
|
||||||
|
|
||||||
namespace heq
|
namespace heq
|
||||||
theorem rec_on {A B : Type} {a : A} {b : B} {C : Π {B : Type} (b : B), a == b → Type} (H₁ : a == b) (H₂ : C a (refl a)) : C b H₁ :=
|
theorem drec_on {A B : Type} {a : A} {b : B} {C : Π {B : Type} (b : B), a == b → Type} (H₁ : a == b) (H₂ : C a (refl a)) : C b H₁ :=
|
||||||
rec (λ H₁ : a == a, show C a H₁, from H₂) H₁ H₁
|
rec (λ H₁ : a == a, show C a H₁, from H₂) H₁ H₁
|
||||||
|
|
||||||
theorem subst {A B : Type} {a : A} {b : B} {P : ∀T : Type, T → Prop} (H₁ : a == b) (H₂ : P A a) : P B b :=
|
theorem subst {A B : Type} {a : A} {b : B} {P : ∀T : Type, T → Prop} (H₁ : a == b) (H₂ : P A a) : P B b :=
|
||||||
rec H₂ H₁
|
rec_on H₁ H₂
|
||||||
|
|
||||||
theorem symm {A B : Type} {a : A} {b : B} (H : a == b) : b == a :=
|
theorem symm {A B : Type} {a : A} {b : B} (H : a == b) : b == a :=
|
||||||
subst H (refl a)
|
subst H (refl a)
|
||||||
|
@ -48,7 +48,7 @@ namespace heq
|
||||||
trans (from_eq H₁) H₂
|
trans (from_eq H₁) H₂
|
||||||
|
|
||||||
theorem to_cast_eq {A B : Type} {a : A} {b : B} (H : a == b) : cast (type_eq H) a = b :=
|
theorem to_cast_eq {A B : Type} {a : A} {b : B} (H : a == b) : cast (type_eq H) a = b :=
|
||||||
rec_on H !cast_eq
|
drec_on H !cast_eq
|
||||||
|
|
||||||
theorem to_eq {A : Type} {a b : A} (H : a == b) : a = b :=
|
theorem to_eq {A : Type} {a b : A} (H : a == b) : a = b :=
|
||||||
calc a = cast (eq.refl A) a : !cast_eq⁻¹
|
calc a = cast (eq.refl A) a : !cast_eq⁻¹
|
||||||
|
|
|
@ -19,11 +19,6 @@ namespace decidable
|
||||||
protected theorem induction_on {C : Prop} (H : decidable p) (H1 : p → C) (H2 : ¬p → C) : C :=
|
protected theorem induction_on {C : Prop} (H : decidable p) (H1 : p → C) (H2 : ¬p → C) : C :=
|
||||||
decidable.rec H1 H2 H
|
decidable.rec H1 H2 H
|
||||||
|
|
||||||
protected definition rec_on {C : decidable p → Type} (H : decidable p)
|
|
||||||
(H1 : Π(a : p), C (inl a)) (H2 : Π(a : ¬p), C (inr a)) :
|
|
||||||
C H :=
|
|
||||||
decidable.rec H1 H2 H
|
|
||||||
|
|
||||||
definition rec_on_true [H : decidable p] {H1 : p → Type} {H2 : ¬p → Type} (H3 : p) (H4 : H1 H3)
|
definition rec_on_true [H : decidable p] {H1 : p → Type} {H2 : ¬p → Type} (H3 : p) (H4 : H1 H3)
|
||||||
: rec_on H H1 H2 :=
|
: rec_on H H1 H2 :=
|
||||||
rec_on H (λh, H4) (λh, false.rec_type _ (h H3))
|
rec_on H (λh, H4) (λh, false.rec_type _ (h H3))
|
||||||
|
|
|
@ -53,31 +53,31 @@ calc_trans eq.trans
|
||||||
open eq.ops
|
open eq.ops
|
||||||
|
|
||||||
namespace eq
|
namespace eq
|
||||||
definition rec_on {A : Type} {a a' : A} {B : Πa' : A, a = a' → Type} (H₁ : a = a') (H₂ : B a (refl a)) : B a' H₁ :=
|
definition drec_on {A : Type} {a a' : A} {B : Πa' : A, a = a' → Type} (H₁ : a = a') (H₂ : B a (refl a)) : B a' H₁ :=
|
||||||
eq.rec (λH₁ : a = a, show B a H₁, from H₂) H₁ H₁
|
eq.rec (λH₁ : a = a, show B a H₁, from H₂) H₁ H₁
|
||||||
|
|
||||||
theorem rec_on_id {A : Type} {a : A} {B : Πa' : A, a = a' → Type} (H : a = a) (b : B a H) : rec_on H b = b :=
|
theorem rec_on_id {A : Type} {a : A} {B : Πa' : A, a = a' → Type} (H : a = a) (b : B a H) : drec_on H b = b :=
|
||||||
rfl
|
rfl
|
||||||
|
|
||||||
theorem rec_on_constant {A : Type} {a a' : A} {B : Type} (H : a = a') (b : B) : rec_on H b = b :=
|
theorem rec_on_constant {A : Type} {a a' : A} {B : Type} (H : a = a') (b : B) : drec_on H b = b :=
|
||||||
rec_on H (λ(H' : a = a), rec_on_id H' b) H
|
drec_on H (λ(H' : a = a), rec_on_id H' b) H
|
||||||
|
|
||||||
theorem rec_on_constant2 {A : Type} {a₁ a₂ a₃ a₄ : A} {B : Type} (H₁ : a₁ = a₂) (H₂ : a₃ = a₄) (b : B) :
|
theorem rec_on_constant2 {A : Type} {a₁ a₂ a₃ a₄ : A} {B : Type} (H₁ : a₁ = a₂) (H₂ : a₃ = a₄) (b : B) :
|
||||||
rec_on H₁ b = rec_on H₂ b :=
|
drec_on H₁ b = drec_on H₂ b :=
|
||||||
rec_on_constant H₁ b ⬝ (rec_on_constant H₂ b)⁻¹
|
rec_on_constant H₁ b ⬝ (rec_on_constant H₂ b)⁻¹
|
||||||
|
|
||||||
theorem rec_on_irrel {A B : Type} {a a' : A} {f : A → B} {D : B → Type} (H : a = a') (H' : f a = f a') (b : D (f a)) :
|
theorem rec_on_irrel {A B : Type} {a a' : A} {f : A → B} {D : B → Type} (H : a = a') (H' : f a = f a') (b : D (f a)) :
|
||||||
rec_on H b = rec_on H' b :=
|
drec_on H b = drec_on H' b :=
|
||||||
rec_on H (λ(H : a = a) (H' : f a = f a), rec_on_id H b ⬝ rec_on_id H' b⁻¹) H H'
|
drec_on H (λ(H : a = a) (H' : f a = f a), rec_on_id H b ⬝ rec_on_id H' b⁻¹) H H'
|
||||||
|
|
||||||
theorem rec_id {A : Type} {a : A} {B : A → Type} (H : a = a) (b : B a) : rec b H = b :=
|
theorem rec_id {A : Type} {a : A} {B : A → Type} (H : a = a) (b : B a) : rec b H = b :=
|
||||||
rfl
|
rfl
|
||||||
|
|
||||||
theorem rec_on_compose {A : Type} {a b c : A} {P : A → Type} (H₁ : a = b) (H₂ : b = c)
|
theorem rec_on_compose {A : Type} {a b c : A} {P : A → Type} (H₁ : a = b) (H₂ : b = c)
|
||||||
(u : P a) :
|
(u : P a) :
|
||||||
rec_on H₂ (rec_on H₁ u) = rec_on (trans H₁ H₂) u :=
|
drec_on H₂ (drec_on H₁ u) = drec_on (trans H₁ H₂) u :=
|
||||||
(show ∀ H₂ : b = c, rec_on H₂ (rec_on H₁ u) = rec_on (trans H₁ H₂) u,
|
(show ∀ H₂ : b = c, drec_on H₂ (drec_on H₁ u) = drec_on (trans H₁ H₂) u,
|
||||||
from rec_on H₂ (take (H₂ : b = b), rec_on_id H₂ _))
|
from drec_on H₂ (take (H₂ : b = b), rec_on_id H₂ _))
|
||||||
H₂
|
H₂
|
||||||
end eq
|
end eq
|
||||||
|
|
||||||
|
@ -131,21 +131,21 @@ section
|
||||||
{c₁ : C a₁ b₁} {c₂ : C a₂ b₂}
|
{c₁ : C a₁ b₁} {c₂ : C a₂ b₂}
|
||||||
{d₁ : D a₁ b₁ c₁} {d₂ : D a₂ b₂ c₂}
|
{d₁ : D a₁ b₁ c₁} {d₂ : D a₂ b₂ c₂}
|
||||||
|
|
||||||
theorem congr_arg2_dep (f : Πa, B a → R) (H₁ : a₁ = a₂) (H₂ : eq.rec_on H₁ b₁ = b₂)
|
theorem congr_arg2_dep (f : Πa, B a → R) (H₁ : a₁ = a₂) (H₂ : eq.drec_on H₁ b₁ = b₂)
|
||||||
: f a₁ b₁ = f a₂ b₂ :=
|
: f a₁ b₁ = f a₂ b₂ :=
|
||||||
eq.rec_on H₁
|
eq.drec_on H₁
|
||||||
(λ (b₂ : B a₁) (H₁ : a₁ = a₁) (H₂ : eq.rec_on H₁ b₁ = b₂),
|
(λ (b₂ : B a₁) (H₁ : a₁ = a₁) (H₂ : eq.drec_on H₁ b₁ = b₂),
|
||||||
calc
|
calc
|
||||||
f a₁ b₁ = f a₁ (eq.rec_on H₁ b₁) : {(eq.rec_on_id H₁ b₁)⁻¹}
|
f a₁ b₁ = f a₁ (eq.drec_on H₁ b₁) : {(eq.rec_on_id H₁ b₁)⁻¹}
|
||||||
... = f a₁ b₂ : {H₂})
|
... = f a₁ b₂ : {H₂})
|
||||||
b₂ H₁ H₂
|
b₂ H₁ H₂
|
||||||
|
|
||||||
theorem congr_arg3_dep (f : Πa b, C a b → R) (H₁ : a₁ = a₂) (H₂ : eq.rec_on H₁ b₁ = b₂)
|
theorem congr_arg3_dep (f : Πa b, C a b → R) (H₁ : a₁ = a₂) (H₂ : eq.drec_on H₁ b₁ = b₂)
|
||||||
(H₃ : eq.rec_on (congr_arg2_dep C H₁ H₂) c₁ = c₂) : f a₁ b₁ c₁ = f a₂ b₂ c₂ :=
|
(H₃ : eq.drec_on (congr_arg2_dep C H₁ H₂) c₁ = c₂) : f a₁ b₁ c₁ = f a₂ b₂ c₂ :=
|
||||||
eq.rec_on H₁
|
eq.drec_on H₁
|
||||||
(λ (b₂ : B a₁) (H₂ : b₁ = b₂) (c₂ : C a₁ b₂)
|
(λ (b₂ : B a₁) (H₂ : b₁ = b₂) (c₂ : C a₁ b₂)
|
||||||
(H₃ : (rec_on (congr_arg2_dep C (refl a₁) H₂) c₁) = c₂),
|
(H₃ : (drec_on (congr_arg2_dep C (refl a₁) H₂) c₁) = c₂),
|
||||||
have H₃' : eq.rec_on H₂ c₁ = c₂, from rec_on_irrel H₂ _ c₁ ⬝ H₃,
|
have H₃' : eq.drec_on H₂ c₁ = c₂, from rec_on_irrel H₂ _ c₁ ⬝ H₃,
|
||||||
congr_arg2_dep (f a₁) H₂ H₃')
|
congr_arg2_dep (f a₁) H₂ H₃')
|
||||||
b₂ H₂ c₂ H₃
|
b₂ H₂ c₂ H₃
|
||||||
|
|
||||||
|
@ -164,7 +164,7 @@ end
|
||||||
section
|
section
|
||||||
variables {A B : Type} {C : A → B → Type} {R : Type}
|
variables {A B : Type} {C : A → B → Type} {R : Type}
|
||||||
variables {a₁ a₂ : A} {b₁ b₂ : B} {c₁ : C a₁ b₁} {c₂ : C a₂ b₂}
|
variables {a₁ a₂ : A} {b₁ b₂ : B} {c₁ : C a₁ b₁} {c₂ : C a₂ b₂}
|
||||||
theorem congr_arg3_ndep_dep (f : Πa b, C a b → R) (H₁ : a₁ = a₂) (H₂ : b₁ = b₂) (H₃ : eq.rec_on (congr_arg2 C H₁ H₂) c₁ = c₂) :
|
theorem congr_arg3_ndep_dep (f : Πa b, C a b → R) (H₁ : a₁ = a₂) (H₂ : b₁ = b₂) (H₃ : eq.drec_on (congr_arg2 C H₁ H₂) c₁ = c₂) :
|
||||||
f a₁ b₁ c₁ = f a₂ b₂ c₂ :=
|
f a₁ b₁ c₁ = f a₂ b₂ c₂ :=
|
||||||
congr_arg3_dep f H₁ (rec_on_constant H₁ b₁ ⬝ H₂) H₃
|
congr_arg3_dep f H₁ (rec_on_constant H₁ b₁ ⬝ H₂) H₃
|
||||||
end
|
end
|
||||||
|
|
|
@ -306,6 +306,8 @@ add_subdirectory(library)
|
||||||
set(LEAN_LIBS ${LEAN_LIBS} library)
|
set(LEAN_LIBS ${LEAN_LIBS} library)
|
||||||
add_subdirectory(library/tactic)
|
add_subdirectory(library/tactic)
|
||||||
set(LEAN_LIBS ${LEAN_LIBS} tactic)
|
set(LEAN_LIBS ${LEAN_LIBS} tactic)
|
||||||
|
add_subdirectory(library/definitional)
|
||||||
|
set(LEAN_LIBS ${LEAN_LIBS} definitional)
|
||||||
add_subdirectory(library/error_handling)
|
add_subdirectory(library/error_handling)
|
||||||
set(LEAN_LIBS ${LEAN_LIBS} error_handling)
|
set(LEAN_LIBS ${LEAN_LIBS} error_handling)
|
||||||
add_subdirectory(frontends/lean)
|
add_subdirectory(frontends/lean)
|
||||||
|
|
|
@ -21,6 +21,7 @@ Author: Leonardo de Moura
|
||||||
#include "library/protected.h"
|
#include "library/protected.h"
|
||||||
#include "library/explicit.h"
|
#include "library/explicit.h"
|
||||||
#include "library/reducible.h"
|
#include "library/reducible.h"
|
||||||
|
#include "library/definitional/rec_on.h"
|
||||||
#include "frontends/lean/decl_cmds.h"
|
#include "frontends/lean/decl_cmds.h"
|
||||||
#include "frontends/lean/util.h"
|
#include "frontends/lean/util.h"
|
||||||
#include "frontends/lean/class.h"
|
#include "frontends/lean/class.h"
|
||||||
|
@ -646,6 +647,13 @@ struct inductive_cmd_fn {
|
||||||
return env;
|
return env;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
environment mk_aux_decls(environment env, buffer<inductive_decl> const & decls) {
|
||||||
|
for (inductive_decl const & d : decls) {
|
||||||
|
env = mk_rec_on(env, inductive_decl_name(d));
|
||||||
|
}
|
||||||
|
return env;
|
||||||
|
}
|
||||||
|
|
||||||
/** \brief Auxiliary method used for debugging */
|
/** \brief Auxiliary method used for debugging */
|
||||||
void display(std::ostream & out, buffer<inductive_decl> const & decls) {
|
void display(std::ostream & out, buffer<inductive_decl> const & decls) {
|
||||||
if (!m_levels.empty()) {
|
if (!m_levels.empty()) {
|
||||||
|
@ -681,7 +689,8 @@ struct inductive_cmd_fn {
|
||||||
environment env = module::add_inductive(m_p.env(), ls, m_num_params, to_list(decls.begin(), decls.end()));
|
environment env = module::add_inductive(m_p.env(), ls, m_num_params, to_list(decls.begin(), decls.end()));
|
||||||
update_declaration_index(env);
|
update_declaration_index(env);
|
||||||
env = add_aliases(env, ls, locals, decls);
|
env = add_aliases(env, ls, locals, decls);
|
||||||
return apply_modifiers(env);
|
env = apply_modifiers(env);
|
||||||
|
return mk_aux_decls(env, decls);
|
||||||
}
|
}
|
||||||
};
|
};
|
||||||
|
|
||||||
|
|
3
src/library/definitional/CMakeLists.txt
Normal file
3
src/library/definitional/CMakeLists.txt
Normal file
|
@ -0,0 +1,3 @@
|
||||||
|
add_library(definitional rec_on.cpp)
|
||||||
|
|
||||||
|
target_link_libraries(definitional ${LEAN_LIBS})
|
57
src/library/definitional/rec_on.cpp
Normal file
57
src/library/definitional/rec_on.cpp
Normal file
|
@ -0,0 +1,57 @@
|
||||||
|
/*
|
||||||
|
Copyright (c) 2014 Microsoft Corporation. All rights reserved.
|
||||||
|
Released under Apache 2.0 license as described in the file LICENSE.
|
||||||
|
|
||||||
|
Author: Leonardo de Moura
|
||||||
|
*/
|
||||||
|
#include "kernel/environment.h"
|
||||||
|
#include "kernel/instantiate.h"
|
||||||
|
#include "kernel/abstract.h"
|
||||||
|
#include "kernel/type_checker.h"
|
||||||
|
#include "kernel/inductive/inductive.h"
|
||||||
|
#include "library/module.h"
|
||||||
|
#include "library/protected.h"
|
||||||
|
|
||||||
|
namespace lean {
|
||||||
|
environment mk_rec_on(environment const & env, name const & n) {
|
||||||
|
name rec_on_name(n, "rec_on");
|
||||||
|
name_generator ngen;
|
||||||
|
declaration rec_decl = env.get(inductive::get_elim_name(n));
|
||||||
|
|
||||||
|
buffer<expr> locals;
|
||||||
|
expr rec_type = rec_decl.get_type();
|
||||||
|
while (is_pi(rec_type)) {
|
||||||
|
expr local = mk_local(ngen.next(), binding_name(rec_type), binding_domain(rec_type), binding_info(rec_type));
|
||||||
|
rec_type = instantiate(binding_body(rec_type), local);
|
||||||
|
locals.push_back(local);
|
||||||
|
}
|
||||||
|
|
||||||
|
// locals order
|
||||||
|
// A C minor_premises indices major-premise
|
||||||
|
|
||||||
|
// new_locals order
|
||||||
|
// A C indices major-premise minor-premises
|
||||||
|
buffer<expr> new_locals;
|
||||||
|
unsigned idx_major_sz = *inductive::get_num_indices(env, n) + 1;
|
||||||
|
unsigned minor_sz = *inductive::get_num_minor_premises(env, n);
|
||||||
|
unsigned AC_sz = locals.size() - minor_sz - idx_major_sz;
|
||||||
|
for (unsigned i = 0; i < AC_sz; i++)
|
||||||
|
new_locals.push_back(locals[i]);
|
||||||
|
for (unsigned i = 0; i < idx_major_sz; i++)
|
||||||
|
new_locals.push_back(locals[AC_sz + minor_sz + i]);
|
||||||
|
for (unsigned i = 0; i < minor_sz; i++)
|
||||||
|
new_locals.push_back(locals[AC_sz + i]);
|
||||||
|
expr rec_on_type = Pi(new_locals, rec_type);
|
||||||
|
|
||||||
|
levels ls = param_names_to_levels(rec_decl.get_univ_params());
|
||||||
|
expr rec = mk_constant(rec_decl.get_name(), ls);
|
||||||
|
expr rec_on_val = Fun(new_locals, mk_app(rec, locals));
|
||||||
|
|
||||||
|
bool opaque = false;
|
||||||
|
bool use_conv_opt = true;
|
||||||
|
environment new_env = module::add(env,
|
||||||
|
check(env, mk_definition(env, rec_on_name, rec_decl.get_univ_params(), rec_on_type, rec_on_val,
|
||||||
|
opaque, rec_decl.get_module_idx(), use_conv_opt)));
|
||||||
|
return add_protected(new_env, rec_on_name);
|
||||||
|
}
|
||||||
|
}
|
17
src/library/definitional/rec_on.h
Normal file
17
src/library/definitional/rec_on.h
Normal file
|
@ -0,0 +1,17 @@
|
||||||
|
/*
|
||||||
|
Copyright (c) 2014 Microsoft Corporation. All rights reserved.
|
||||||
|
Released under Apache 2.0 license as described in the file LICENSE.
|
||||||
|
|
||||||
|
Author: Leonardo de Moura
|
||||||
|
*/
|
||||||
|
#pragma once
|
||||||
|
#include "kernel/environment.h"
|
||||||
|
|
||||||
|
namespace lean {
|
||||||
|
/** \brief Given an inductive datatype \c n in \c env, add
|
||||||
|
<tt>n.rec_on</tt> to the environment.
|
||||||
|
|
||||||
|
\remark <tt>rec_on</tt> is based on <tt>n.rec</tt>
|
||||||
|
*/
|
||||||
|
environment mk_rec_on(environment const & env, name const & n);
|
||||||
|
}
|
|
@ -9,6 +9,9 @@ Author: Leonardo de Moura
|
||||||
#include "util/name_generator.h"
|
#include "util/name_generator.h"
|
||||||
|
|
||||||
namespace lean {
|
namespace lean {
|
||||||
|
static name * g_tmp_prefix = nullptr;
|
||||||
|
name_generator::name_generator():name_generator(*g_tmp_prefix) {}
|
||||||
|
|
||||||
name name_generator::next() {
|
name name_generator::next() {
|
||||||
if (m_next_idx == std::numeric_limits<unsigned>::max()) {
|
if (m_next_idx == std::numeric_limits<unsigned>::max()) {
|
||||||
// avoid overflow
|
// avoid overflow
|
||||||
|
@ -26,7 +29,6 @@ void swap(name_generator & a, name_generator & b) {
|
||||||
}
|
}
|
||||||
|
|
||||||
DECL_UDATA(name_generator)
|
DECL_UDATA(name_generator)
|
||||||
static name * g_tmp_prefix = nullptr;
|
|
||||||
static int mk_name_generator(lua_State * L) {
|
static int mk_name_generator(lua_State * L) {
|
||||||
if (lua_gettop(L) == 0)
|
if (lua_gettop(L) == 0)
|
||||||
return push_name_generator(L, name_generator(*g_tmp_prefix));
|
return push_name_generator(L, name_generator(*g_tmp_prefix));
|
||||||
|
|
|
@ -21,6 +21,7 @@ class name_generator {
|
||||||
unsigned m_next_idx;
|
unsigned m_next_idx;
|
||||||
public:
|
public:
|
||||||
name_generator(name const & prefix):m_prefix(prefix), m_next_idx(0) { lean_assert(!prefix.is_anonymous()); }
|
name_generator(name const & prefix):m_prefix(prefix), m_next_idx(0) { lean_assert(!prefix.is_anonymous()); }
|
||||||
|
name_generator();
|
||||||
|
|
||||||
name const & prefix() const { return m_prefix; }
|
name const & prefix() const { return m_prefix; }
|
||||||
|
|
||||||
|
|
|
@ -75,7 +75,7 @@ H₃
|
||||||
C a₁ b₂
|
C a₁ b₂
|
||||||
-- ACK
|
-- ACK
|
||||||
-- SYNTH|134|53
|
-- SYNTH|134|53
|
||||||
rec_on (congr_arg2_dep C (refl a₁) H₂) c₁
|
drec_on (congr_arg2_dep C (refl a₁) H₂) c₁
|
||||||
-- ACK
|
-- ACK
|
||||||
-- SYMBOL|134|53
|
-- SYMBOL|134|53
|
||||||
_
|
_
|
||||||
|
|
|
@ -55,29 +55,29 @@ namespace eq
|
||||||
-- definition rec_on {A : Type} {a1 a2 : A} {B : A → Type} (H1 : a1 = a2) (H2 : B a1) : B a2 :=
|
-- definition rec_on {A : Type} {a1 a2 : A} {B : A → Type} (H1 : a1 = a2) (H2 : B a1) : B a2 :=
|
||||||
-- eq.rec H2 H1
|
-- eq.rec H2 H1
|
||||||
|
|
||||||
definition rec_on {A : Type} {a a' : A} {B : Πa' : A, a = a' → Type} (H1 : a = a') (H2 : B a (refl a)) : B a' H1 :=
|
definition drec_on {A : Type} {a a' : A} {B : Πa' : A, a = a' → Type} (H1 : a = a') (H2 : B a (refl a)) : B a' H1 :=
|
||||||
eq.rec (λH1 : a = a, show B a H1, from H2) H1 H1
|
eq.rec (λH1 : a = a, show B a H1, from H2) H1 H1
|
||||||
|
|
||||||
theorem rec_on_id {A : Type} {a : A} {B : Πa' : A, a = a' → Type} (H : a = a) (b : B a H) : rec_on H b = b :=
|
theorem drec_on_id {A : Type} {a : A} {B : Πa' : A, a = a' → Type} (H : a = a) (b : B a H) : drec_on H b = b :=
|
||||||
refl (rec_on rfl b)
|
refl (drec_on rfl b)
|
||||||
|
|
||||||
theorem rec_on_constant {A : Type} {a a' : A} {B : Type} (H : a = a') (b : B) : rec_on H b = b :=
|
theorem drec_on_constant {A : Type} {a a' : A} {B : Type} (H : a = a') (b : B) : drec_on H b = b :=
|
||||||
rec_on H (λ(H' : a = a), rec_on_id H' b) H
|
drec_on H (λ(H' : a = a), drec_on_id H' b) H
|
||||||
|
|
||||||
theorem rec_on_constant2 {A : Type} {a₁ a₂ a₃ a₄ : A} {B : Type} (H₁ : a₁ = a₂) (H₂ : a₃ = a₄) (b : B) : rec_on H₁ b = rec_on H₂ b :=
|
theorem drec_on_constant2 {A : Type} {a₁ a₂ a₃ a₄ : A} {B : Type} (H₁ : a₁ = a₂) (H₂ : a₃ = a₄) (b : B) : drec_on H₁ b = drec_on H₂ b :=
|
||||||
rec_on_constant H₁ b ⬝ rec_on_constant H₂ b ⁻¹
|
drec_on_constant H₁ b ⬝ drec_on_constant H₂ b ⁻¹
|
||||||
|
|
||||||
theorem rec_on_irrel {A B : Type} {a a' : A} {f : A → B} {D : B → Type} (H : a = a') (H' : f a = f a') (b : D (f a)) : rec_on H b = rec_on H' b :=
|
theorem drec_on_irrel {A B : Type} {a a' : A} {f : A → B} {D : B → Type} (H : a = a') (H' : f a = f a') (b : D (f a)) : drec_on H b = drec_on H' b :=
|
||||||
rec_on H (λ(H : a = a) (H' : f a = f a), rec_on_id H b ⬝ rec_on_id H' b⁻¹) H H'
|
drec_on H (λ(H : a = a) (H' : f a = f a), drec_on_id H b ⬝ drec_on_id H' b⁻¹) H H'
|
||||||
|
|
||||||
theorem rec_id {A : Type} {a : A} {B : A → Type} (H : a = a) (b : B a) : rec b H = b :=
|
theorem rec_id {A : Type} {a : A} {B : A → Type} (H : a = a) (b : B a) : rec b H = b :=
|
||||||
id_refl H⁻¹ ▸ refl (eq.rec b (refl a))
|
id_refl H⁻¹ ▸ refl (eq.rec b (refl a))
|
||||||
|
|
||||||
theorem rec_on_compose {A : Type} {a b c : A} {P : A → Type} (H1 : a = b) (H2 : b = c)
|
theorem drec_on_compose {A : Type} {a b c : A} {P : A → Type} (H1 : a = b) (H2 : b = c)
|
||||||
(u : P a) :
|
(u : P a) :
|
||||||
rec_on H2 (rec_on H1 u) = rec_on (trans H1 H2) u :=
|
drec_on H2 (drec_on H1 u) = drec_on (trans H1 H2) u :=
|
||||||
(show ∀(H2 : b = c), rec_on H2 (rec_on H1 u) = rec_on (trans H1 H2) u,
|
(show ∀(H2 : b = c), drec_on H2 (drec_on H1 u) = drec_on (trans H1 H2) u,
|
||||||
from rec_on H2 (take (H2 : b = b), rec_on_id H2 _))
|
from drec_on H2 (take (H2 : b = b), drec_on_id H2 _))
|
||||||
H2
|
H2
|
||||||
end eq
|
end eq
|
||||||
|
|
||||||
|
@ -118,29 +118,29 @@ theorem congr5 {A B C D E F : Type} {a a' : A} {b b' : B} {c c' : C} {d d' : D}
|
||||||
Hf ▸ congr_arg5 f Ha Hb Hc Hd He
|
Hf ▸ congr_arg5 f Ha Hb Hc Hd He
|
||||||
|
|
||||||
theorem congr_arg2_dep {A : Type} {B : A → Type} {C : Type} {a₁ a₂ : A}
|
theorem congr_arg2_dep {A : Type} {B : A → Type} {C : Type} {a₁ a₂ : A}
|
||||||
{b₁ : B a₁} {b₂ : B a₂} (f : Πa, B a → C) (H₁ : a₁ = a₂) (H₂ : eq.rec_on H₁ b₁ = b₂) :
|
{b₁ : B a₁} {b₂ : B a₂} (f : Πa, B a → C) (H₁ : a₁ = a₂) (H₂ : eq.drec_on H₁ b₁ = b₂) :
|
||||||
f a₁ b₁ = f a₂ b₂ :=
|
f a₁ b₁ = f a₂ b₂ :=
|
||||||
eq.rec_on H₁
|
eq.drec_on H₁
|
||||||
(λ (b₂ : B a₁) (H₁ : a₁ = a₁) (H₂ : eq.rec_on H₁ b₁ = b₂),
|
(λ (b₂ : B a₁) (H₁ : a₁ = a₁) (H₂ : eq.drec_on H₁ b₁ = b₂),
|
||||||
calc
|
calc
|
||||||
f a₁ b₁ = f a₁ (eq.rec_on H₁ b₁) : {(eq.rec_on_id H₁ b₁)⁻¹}
|
f a₁ b₁ = f a₁ (eq.drec_on H₁ b₁) : {(eq.drec_on_id H₁ b₁)⁻¹}
|
||||||
... = f a₁ b₂ : {H₂})
|
... = f a₁ b₂ : {H₂})
|
||||||
b₂ H₁ H₂
|
b₂ H₁ H₂
|
||||||
|
|
||||||
theorem congr_arg3_dep {A : Type} {B : A → Type} {C : Πa, B a → Type} {D : Type} {a₁ a₂ : A} {b₁ : B a₁} {b₂ : B a₂} {c₁ : C a₁ b₁} {c₂ : C a₂ b₂} (f : Πa b, C a b → D)
|
theorem congr_arg3_dep {A : Type} {B : A → Type} {C : Πa, B a → Type} {D : Type} {a₁ a₂ : A} {b₁ : B a₁} {b₂ : B a₂} {c₁ : C a₁ b₁} {c₂ : C a₂ b₂} (f : Πa b, C a b → D)
|
||||||
(H₁ : a₁ = a₂) (H₂ : eq.rec_on H₁ b₁ = b₂) (H₃ : eq.rec_on (congr_arg2_dep C H₁ H₂) c₁ = c₂) :
|
(H₁ : a₁ = a₂) (H₂ : eq.drec_on H₁ b₁ = b₂) (H₃ : eq.drec_on (congr_arg2_dep C H₁ H₂) c₁ = c₂) :
|
||||||
f a₁ b₁ c₁ = f a₂ b₂ c₂ :=
|
f a₁ b₁ c₁ = f a₂ b₂ c₂ :=
|
||||||
eq.rec_on H₁
|
eq.drec_on H₁
|
||||||
(λ (b₂ : B a₁) (H₂ : b₁ = b₂) (c₂ : C a₁ b₂) (H₃ : _ = c₂),
|
(λ (b₂ : B a₁) (H₂ : b₁ = b₂) (c₂ : C a₁ b₂) (H₃ : _ = c₂),
|
||||||
have H₃' : eq.rec_on H₂ c₁ = c₂,
|
have H₃' : eq.drec_on H₂ c₁ = c₂,
|
||||||
from (rec_on_irrel H₂ (congr_arg2_dep C (refl a₁) H₂) c₁⁻¹) ▸ H₃,
|
from (drec_on_irrel H₂ (congr_arg2_dep C (refl a₁) H₂) c₁⁻¹) ▸ H₃,
|
||||||
congr_arg2_dep (f a₁) H₂ H₃')
|
congr_arg2_dep (f a₁) H₂ H₃')
|
||||||
b₂ H₂ c₂ H₃
|
b₂ H₂ c₂ H₃
|
||||||
|
|
||||||
theorem congr_arg3_ndep_dep {A B : Type} {C : A → B → Type} {D : Type} {a₁ a₂ : A} {b₁ b₂ : B} {c₁ : C a₁ b₁} {c₂ : C a₂ b₂} (f : Πa b, C a b → D)
|
theorem congr_arg3_ndep_dep {A B : Type} {C : A → B → Type} {D : Type} {a₁ a₂ : A} {b₁ b₂ : B} {c₁ : C a₁ b₁} {c₂ : C a₂ b₂} (f : Πa b, C a b → D)
|
||||||
(H₁ : a₁ = a₂) (H₂ : b₁ = b₂) (H₃ : eq.rec_on (congr_arg2 C H₁ H₂) c₁ = c₂) :
|
(H₁ : a₁ = a₂) (H₂ : b₁ = b₂) (H₃ : eq.drec_on (congr_arg2 C H₁ H₂) c₁ = c₂) :
|
||||||
f a₁ b₁ c₁ = f a₂ b₂ c₂ :=
|
f a₁ b₁ c₁ = f a₂ b₂ c₂ :=
|
||||||
congr_arg3_dep f H₁ (rec_on_constant H₁ b₁ ⬝ H₂) H₃
|
congr_arg3_dep f H₁ (drec_on_constant H₁ b₁ ⬝ H₂) H₃
|
||||||
|
|
||||||
theorem equal_f {A : Type} {B : A → Type} {f g : Π x, B x} (H : f = g) : ∀x, f x = g x :=
|
theorem equal_f {A : Type} {B : A → Type} {f g : Π x, B x} (H : f = g) : ∀x, f x = g x :=
|
||||||
take x, congr_fun H x
|
take x, congr_fun H x
|
||||||
|
|
|
@ -4,6 +4,7 @@
|
||||||
false|Prop
|
false|Prop
|
||||||
false.rec|∀ (C : Prop), false → C
|
false.rec|∀ (C : Prop), false → C
|
||||||
false_elim|false → ?c
|
false_elim|false → ?c
|
||||||
|
false.rec_on|∀ (C : Prop), false → C
|
||||||
not_false_trivial|¬ false
|
not_false_trivial|¬ false
|
||||||
true_ne_false|¬ true = false
|
true_ne_false|¬ true = false
|
||||||
p_ne_false|?p → ?p ≠ false
|
p_ne_false|?p → ?p ≠ false
|
||||||
|
|
|
@ -10,6 +10,7 @@ pos_num.bit1|pos_num → pos_num
|
||||||
pos_num.rec|?C pos_num.one → (Π (a : pos_num), ?C a → ?C (pos_num.bit1 a)) → (Π (a : pos_num), ?C a → ?C (pos_num.bit0 a)) → (Π (n : pos_num), ?C n)
|
pos_num.rec|?C pos_num.one → (Π (a : pos_num), ?C a → ?C (pos_num.bit1 a)) → (Π (a : pos_num), ?C a → ?C (pos_num.bit0 a)) → (Π (n : pos_num), ?C n)
|
||||||
pos_num.one|pos_num
|
pos_num.one|pos_num
|
||||||
pos_num.num_bits|pos_num → pos_num
|
pos_num.num_bits|pos_num → pos_num
|
||||||
|
pos_num.rec_on|Π (n : pos_num), ?C pos_num.one → (Π (a : pos_num), ?C a → ?C (pos_num.bit1 a)) → (Π (a : pos_num), ?C a → ?C (pos_num.bit0 a)) → ?C n
|
||||||
pos_num|Type
|
pos_num|Type
|
||||||
-- ENDFINDP
|
-- ENDFINDP
|
||||||
-- BEGINWAIT
|
-- BEGINWAIT
|
||||||
|
@ -24,6 +25,7 @@ pos_num.inc|pos_num → pos_num
|
||||||
pos_num.bit1|pos_num → pos_num
|
pos_num.bit1|pos_num → pos_num
|
||||||
pos_num.rec|?C pos_num.one → (Π (a : pos_num), ?C a → ?C (pos_num.bit1 a)) → (Π (a : pos_num), ?C a → ?C (pos_num.bit0 a)) → (Π (n : pos_num), ?C n)
|
pos_num.rec|?C pos_num.one → (Π (a : pos_num), ?C a → ?C (pos_num.bit1 a)) → (Π (a : pos_num), ?C a → ?C (pos_num.bit0 a)) → (Π (n : pos_num), ?C n)
|
||||||
pos_num.one|pos_num
|
pos_num.one|pos_num
|
||||||
|
pos_num.rec_on|Π (n : pos_num), ?C pos_num.one → (Π (a : pos_num), ?C a → ?C (pos_num.bit1 a)) → (Π (a : pos_num), ?C a → ?C (pos_num.bit0 a)) → ?C n
|
||||||
pos_num|Type
|
pos_num|Type
|
||||||
-- ENDFINDP
|
-- ENDFINDP
|
||||||
-- BEGINFINDP
|
-- BEGINFINDP
|
||||||
|
@ -34,5 +36,6 @@ pos_num.inc|pos_num → pos_num
|
||||||
pos_num.bit1|pos_num → pos_num
|
pos_num.bit1|pos_num → pos_num
|
||||||
pos_num.rec|?C pos_num.one → (Π (a : pos_num), ?C a → ?C (pos_num.bit1 a)) → (Π (a : pos_num), ?C a → ?C (pos_num.bit0 a)) → (Π (n : pos_num), ?C n)
|
pos_num.rec|?C pos_num.one → (Π (a : pos_num), ?C a → ?C (pos_num.bit1 a)) → (Π (a : pos_num), ?C a → ?C (pos_num.bit0 a)) → (Π (n : pos_num), ?C n)
|
||||||
pos_num.one|pos_num
|
pos_num.one|pos_num
|
||||||
|
pos_num.rec_on|Π (n : pos_num), ?C pos_num.one → (Π (a : pos_num), ?C a → ?C (pos_num.bit1 a)) → (Π (a : pos_num), ?C a → ?C (pos_num.bit0 a)) → ?C n
|
||||||
pos_num|Type
|
pos_num|Type
|
||||||
-- ENDFINDP
|
-- ENDFINDP
|
||||||
|
|
|
@ -13,9 +13,6 @@ namespace sum
|
||||||
reserve infixr `+`:25
|
reserve infixr `+`:25
|
||||||
infixr `+` := sum
|
infixr `+` := sum
|
||||||
|
|
||||||
definition rec_on {A B : Type} {C : (A + B) → Type} (s : A + B)
|
|
||||||
(H1 : ∀a : A, C (inl B a)) (H2 : ∀b : B, C (inr A b)) : C s :=
|
|
||||||
sum.rec H1 H2 s
|
|
||||||
open eq
|
open eq
|
||||||
|
|
||||||
theorem inl_inj {A B : Type} {a1 a2 : A} (H : inl B a1 = inl B a2) : a1 = a2 :=
|
theorem inl_inj {A B : Type} {a1 a2 : A} (H : inl B a1 = inl B a2) : a1 = a2 :=
|
||||||
|
|
|
@ -15,8 +15,6 @@ namespace tree
|
||||||
variables {A : Type} {C : tree A → Type}
|
variables {A : Type} {C : tree A → Type}
|
||||||
definition cases_on (t : tree A) (e₁ : Πa, C (leaf a)) (e₂ : Πt₁ t₂, C (node t₁ t₂)) : C t :=
|
definition cases_on (t : tree A) (e₁ : Πa, C (leaf a)) (e₂ : Πt₁ t₂, C (node t₁ t₂)) : C t :=
|
||||||
rec e₁ (λt₁ t₂ r₁ r₂, e₂ t₁ t₂) t
|
rec e₁ (λt₁ t₂ r₁ r₂, e₂ t₁ t₂) t
|
||||||
definition rec_on (t : tree A) (e₁ : Πa, C (leaf a)) (e₂ : Πt₁ t₂ r₁ r₂, C (node t₁ t₂)) : C t :=
|
|
||||||
rec e₁ e₂ t
|
|
||||||
end
|
end
|
||||||
|
|
||||||
section
|
section
|
||||||
|
|
|
@ -39,9 +39,6 @@ theorem nat_rec_succ {P : ℕ → Type} (x : P 0) (f : ∀m, P m → P (succ m))
|
||||||
theorem induction_on {P : ℕ → Prop} (a : ℕ) (H1 : P 0) (H2 : ∀ (n : ℕ) (IH : P n), P (succ n)) : P a
|
theorem induction_on {P : ℕ → Prop} (a : ℕ) (H1 : P 0) (H2 : ∀ (n : ℕ) (IH : P n), P (succ n)) : P a
|
||||||
:= nat.rec H1 H2 a
|
:= nat.rec H1 H2 a
|
||||||
|
|
||||||
definition rec_on {P : ℕ → Type} (n : ℕ) (H1 : P 0) (H2 : ∀m, P m → P (succ m)) : P n
|
|
||||||
:= nat.rec H1 H2 n
|
|
||||||
|
|
||||||
-------------------------------------------------- succ pred
|
-------------------------------------------------- succ pred
|
||||||
|
|
||||||
theorem succ_ne_zero (n : ℕ) : succ n ≠ 0
|
theorem succ_ne_zero (n : ℕ) : succ n ≠ 0
|
||||||
|
|
|
@ -34,9 +34,6 @@ theorem nat_rec_succ {P : ℕ → Type} (x : P 0) (f : ∀m, P m → P (succ m))
|
||||||
theorem induction_on {P : ℕ → Prop} (a : ℕ) (H1 : P 0) (H2 : ∀ (n : ℕ) (IH : P n), P (succ n)) : P a
|
theorem induction_on {P : ℕ → Prop} (a : ℕ) (H1 : P 0) (H2 : ∀ (n : ℕ) (IH : P n), P (succ n)) : P a
|
||||||
:= nat.rec H1 H2 a
|
:= nat.rec H1 H2 a
|
||||||
|
|
||||||
definition rec_on {P : ℕ → Type} (n : ℕ) (H1 : P 0) (H2 : ∀m, P m → P (succ m)) : P n
|
|
||||||
:= nat.rec H1 H2 n
|
|
||||||
|
|
||||||
-------------------------------------------------- succ pred
|
-------------------------------------------------- succ pred
|
||||||
|
|
||||||
theorem succ_ne_zero (n : ℕ) : succ n ≠ 0
|
theorem succ_ne_zero (n : ℕ) : succ n ≠ 0
|
||||||
|
|
Loading…
Reference in a new issue