refactor(builtin/kernel): mark exists as opaque after proving key theorems
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
This commit is contained in:
parent
74cae2a154
commit
a8bc9fb4e0
4 changed files with 6 additions and 2 deletions
|
@ -362,3 +362,5 @@ Theorem UnfoldExists2 {A : TypeU} {P : A → Bool} (a : A) (H : P a ∨ (∃ x :
|
||||||
Theorem UnfoldExists {A : TypeU} (P : A → Bool) (a : A) : (∃ x : A, P x) = (P a ∨ (∃ x : A, x ≠ a ∧ P x))
|
Theorem UnfoldExists {A : TypeU} (P : A → Bool) (a : A) : (∃ x : A, P x) = (P a ∨ (∃ x : A, x ≠ a ∧ P x))
|
||||||
:= ImpAntisym (assume H : (∃ x : A, P x), UnfoldExists1 a H)
|
:= ImpAntisym (assume H : (∃ x : A, P x), UnfoldExists1 a H)
|
||||||
(assume H : (P a ∨ (∃ x : A, x ≠ a ∧ P x)), UnfoldExists2 a H).
|
(assume H : (P a ∨ (∃ x : A, x ≠ a ∧ P x)), UnfoldExists2 a H).
|
||||||
|
|
||||||
|
SetOpaque exists true.
|
||||||
|
|
Binary file not shown.
|
@ -1,6 +1,8 @@
|
||||||
Import int.
|
Import int.
|
||||||
Variable P : Int -> Int -> Bool
|
Variable P : Int -> Int -> Bool
|
||||||
|
|
||||||
|
SetOpaque exists false.
|
||||||
|
|
||||||
Theorem T1 (R1 : not (exists x y, P x y)) : forall x y, not (P x y) :=
|
Theorem T1 (R1 : not (exists x y, P x y)) : forall x y, not (P x y) :=
|
||||||
ForallIntro (fun a,
|
ForallIntro (fun a,
|
||||||
ForallIntro (fun b,
|
ForallIntro (fun b,
|
||||||
|
|
|
@ -15,7 +15,7 @@ Theorem T1 : ∃ x y z : N, P x y z :=
|
||||||
N
|
N
|
||||||
(λ x : N, ∃ y z : N, P x y z)
|
(λ x : N, ∃ y z : N, P x y z)
|
||||||
a
|
a
|
||||||
(@ExistsIntro N (λ x : N, ¬ (∀ x::1 : N, ¬ P a x x::1)) b (@ExistsIntro N (λ z : N, P a b z) c H3))
|
(@ExistsIntro N (λ y : N, ∃ z : N, P a y z) b (@ExistsIntro N (λ z : N, P a b z) c H3))
|
||||||
Theorem T2 : ∃ x y z : N, P x y z := ExistsIntro a (ExistsIntro b (ExistsIntro c H3))
|
Theorem T2 : ∃ x y z : N, P x y z := ExistsIntro a (ExistsIntro b (ExistsIntro c H3))
|
||||||
Theorem T3 : ∃ x y z : N, P x y z := ExistsIntro a (ExistsIntro b (ExistsIntro c H3))
|
Theorem T3 : ∃ x y z : N, P x y z := ExistsIntro a (ExistsIntro b (ExistsIntro c H3))
|
||||||
Theorem T4 (H : P a a b) : ∃ x y z : N, P x y z := ExistsIntro a (ExistsIntro a (ExistsIntro b H))
|
Theorem T4 (H : P a a b) : ∃ x y z : N, P x y z := ExistsIntro a (ExistsIntro a (ExistsIntro b H))
|
||||||
|
|
Loading…
Reference in a new issue