refactor(builtin/kernel): mark exists as opaque after proving key theorems

Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
This commit is contained in:
Leonardo de Moura 2014-01-01 11:00:32 -08:00
parent 74cae2a154
commit a8bc9fb4e0
4 changed files with 6 additions and 2 deletions

View file

@ -362,3 +362,5 @@ Theorem UnfoldExists2 {A : TypeU} {P : A → Bool} (a : A) (H : P a (∃ x :
Theorem UnfoldExists {A : TypeU} (P : A → Bool) (a : A) : (∃ x : A, P x) = (P a (∃ x : A, x ≠ a ∧ P x)) Theorem UnfoldExists {A : TypeU} (P : A → Bool) (a : A) : (∃ x : A, P x) = (P a (∃ x : A, x ≠ a ∧ P x))
:= ImpAntisym (assume H : (∃ x : A, P x), UnfoldExists1 a H) := ImpAntisym (assume H : (∃ x : A, P x), UnfoldExists1 a H)
(assume H : (P a (∃ x : A, x ≠ a ∧ P x)), UnfoldExists2 a H). (assume H : (P a (∃ x : A, x ≠ a ∧ P x)), UnfoldExists2 a H).
SetOpaque exists true.

Binary file not shown.

View file

@ -1,6 +1,8 @@
Import int. Import int.
Variable P : Int -> Int -> Bool Variable P : Int -> Int -> Bool
SetOpaque exists false.
Theorem T1 (R1 : not (exists x y, P x y)) : forall x y, not (P x y) := Theorem T1 (R1 : not (exists x y, P x y)) : forall x y, not (P x y) :=
ForallIntro (fun a, ForallIntro (fun a,
ForallIntro (fun b, ForallIntro (fun b,

View file

@ -15,7 +15,7 @@ Theorem T1 : ∃ x y z : N, P x y z :=
N N
(λ x : N, ∃ y z : N, P x y z) (λ x : N, ∃ y z : N, P x y z)
a a
(@ExistsIntro N (λ x : N, ¬ (∀ x::1 : N, ¬ P a x x::1)) b (@ExistsIntro N (λ z : N, P a b z) c H3)) (@ExistsIntro N (λ y : N, ∃ z : N, P a y z) b (@ExistsIntro N (λ z : N, P a b z) c H3))
Theorem T2 : ∃ x y z : N, P x y z := ExistsIntro a (ExistsIntro b (ExistsIntro c H3)) Theorem T2 : ∃ x y z : N, P x y z := ExistsIntro a (ExistsIntro b (ExistsIntro c H3))
Theorem T3 : ∃ x y z : N, P x y z := ExistsIntro a (ExistsIntro b (ExistsIntro c H3)) Theorem T3 : ∃ x y z : N, P x y z := ExistsIntro a (ExistsIntro b (ExistsIntro c H3))
Theorem T4 (H : P a a b) : ∃ x y z : N, P x y z := ExistsIntro a (ExistsIntro a (ExistsIntro b H)) Theorem T4 (H : P a a b) : ∃ x y z : N, P x y z := ExistsIntro a (ExistsIntro a (ExistsIntro b H))