feat(hit/quotient): prove the flattening lemma

This commit is contained in:
Floris van Doorn 2015-10-26 18:29:19 -04:00 committed by Leonardo de Moura
parent aa9f32a3bd
commit a99a99f047
10 changed files with 291 additions and 42 deletions

View file

@ -20,7 +20,7 @@ The rows indicate the chapters, the columns the sections.
| Ch 3 | + | + | + | + | ½ | + | + | - | + | . | + | | | | | | Ch 3 | + | + | + | + | ½ | + | + | - | + | . | + | | | | |
| Ch 4 | - | + | + | + | . | + | ½ | + | + | | | | | | | | Ch 4 | - | + | + | + | . | + | ½ | + | + | | | | | | |
| Ch 5 | - | . | ½ | - | - | . | . | ½ | | | | | | | | | Ch 5 | - | . | ½ | - | - | . | . | ½ | | | | | | | |
| Ch 6 | . | + | + | + | + | ½ | ½ | + | ¾ | ¼ | ¾ | - | . | | | | Ch 6 | . | + | + | + | + | ½ | ½ | + | ¾ | ¼ | ¾ | + | . | | |
| Ch 7 | + | + | + | - | ½ | - | - | | | | | | | | | | Ch 7 | + | + | + | - | ½ | - | - | | | | | | | | |
| Ch 8 | ¾ | - | - | - | - | - | - | - | - | - | | | | | | | Ch 8 | ¾ | - | - | - | - | - | - | - | - | - | | | | | |
| Ch 9 | ¾ | + | + | ½ | ¾ | ½ | - | - | - | | | | | | | | Ch 9 | ¾ | + | + | ½ | ¾ | ½ | - | - | - | | | | | | |
@ -120,7 +120,7 @@ Chapter 6: Higher inductive types
- 6.9 (Truncations): [hit.trunc](hit/trunc.hlean) (except Lemma 6.9.3) - 6.9 (Truncations): [hit.trunc](hit/trunc.hlean) (except Lemma 6.9.3)
- 6.10 (Quotients): [hit.set_quotient](hit/set_quotient.hlean) (up to 6.10.3). We define integers differently, to make them compute, in the folder [types.int](types/int/int.md). 6.10.13 is in [types.int.hott](types/int/hott.hlean) - 6.10 (Quotients): [hit.set_quotient](hit/set_quotient.hlean) (up to 6.10.3). We define integers differently, to make them compute, in the folder [types.int](types/int/int.md). 6.10.13 is in [types.int.hott](types/int/hott.hlean)
- 6.11 (Algebra): [algebra.group](algebra/group.hlean), [algebra.fundamental_group](algebra/fundamental_group.hlean) (no homotopy groups yet) - 6.11 (Algebra): [algebra.group](algebra/group.hlean), [algebra.fundamental_group](algebra/fundamental_group.hlean) (no homotopy groups yet)
- 6.12 (The flattening lemma): not formalized yet - 6.12 (The flattening lemma): [hit.quotient](hit/quotient.hlean) (for quotients instead of homotopy coequalizers, but these are practically the same)
- 6.13 (The general syntax of higher inductive definitions): no formalizable content - 6.13 (The general syntax of higher inductive definitions): no formalizable content
Chapter 7: Homotopy n-types Chapter 7: Homotopy n-types

View file

@ -0,0 +1,45 @@
/-
Copyright (c) 2015 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Floris van Doorn
Coherence conditions for operations on pathovers
-/
open function
namespace eq
variables {A A' A'' : Type} {a a' a₂ : A} (B : A → Type) {p : a = a₂}
{b b' : B a} {b₂ : B a₂}
definition pathover_ap_id (q : b =[p] b₂) : pathover_ap B id q = change_path (ap_id p)⁻¹ q :=
by induction q; reflexivity
definition pathover_ap_compose (B : A'' → Type) (g : A' → A'') (f : A → A')
{b : B (g (f a))} {b₂ : B (g (f a₂))} (q : b =[p] b₂) : pathover_ap B (g ∘ f) q
= change_path (ap_compose g f p)⁻¹ (pathover_ap B g (pathover_ap (B ∘ g) f q)) :=
by induction q; reflexivity
definition pathover_ap_compose_rev (B : A'' → Type) (g : A' → A'') (f : A → A')
{b : B (g (f a))} {b₂ : B (g (f a₂))} (q : b =[p] b₂) :
pathover_ap B g (pathover_ap (B ∘ g) f q)
= change_path (ap_compose g f p) (pathover_ap B (g ∘ f) q) :=
by induction q; reflexivity
definition apdo_eq_apdo_ap {B : A' → Type} (g : Πb, B b) (f : A → A') (p : a = a')
: apdo (λx, g (f x)) p = pathover_of_pathover_ap B f (apdo g (ap f p)) :=
by induction p; reflexivity
definition pathover_of_tr_eq_idp (r : b = b') : pathover_of_tr_eq r = pathover_idp_of_eq r :=
idp
definition pathover_of_tr_eq_eq_concato (r : p ▸ b = b₂)
: pathover_of_tr_eq r = pathover_tr p b ⬝o pathover_idp_of_eq r :=
by induction r; induction p; reflexivity
definition apo011_eq_apo11_apdo (f : Πa, B a → A') (p : a = a₂) (q : b =[p] b₂)
: apo011 f p q = eq_of_pathover (apo11 (apdo f p) q) :=
by induction q; reflexivity
end eq

View file

@ -280,9 +280,13 @@ namespace eq
{ reflexivity} { reflexivity}
end end
-- example (p q : a = a') : to_inv (hdeg_square_equiv' p q) = hdeg_square := idp -- this fails
example (p q : a = a') : to_inv (hdeg_square_equiv p q) = hdeg_square := idp example (p q : a = a') : to_inv (hdeg_square_equiv p q) = hdeg_square := idp
/-
characterization of pathovers in a equality type. The type B of the equality is fixed here.
A version where B may also varies over the path p is given in the file squareover
-/
definition eq_pathover [unfold 7] {f g : A → B} {p : a = a'} {q : f a = g a} {r : f a' = g a'} definition eq_pathover [unfold 7] {f g : A → B} {p : a = a'} {q : f a = g a} {r : f a' = g a'}
(s : square q r (ap f p) (ap g p)) : q =[p] r := (s : square q r (ap f p) (ap g p)) : q =[p] r :=
by induction p;apply pathover_idp_of_eq;exact eq_of_vdeg_square s by induction p;apply pathover_idp_of_eq;exact eq_of_vdeg_square s

View file

@ -140,7 +140,7 @@ namespace eq
-/ -/
definition square_of_squareover_ids {b₀₀ b₀₂ b₂₀ b₂₂ : B a} definition square_of_squareover_ids {b₀₀ b₀₂ b₂₀ b₂₂ : B a}
(t : b₀₀ = b₂₀) (b : b₀₂ = b₂₂) (l : b₀₀ = b₀₂) (r : b₂₀ = b₂₂) {t : b₀₀ = b₂₀} {b : b₀₂ = b₂₂} {l : b₀₀ = b₀₂} {r : b₂₀ = b₂₂}
(so : squareover B ids (pathover_idp_of_eq t) (so : squareover B ids (pathover_idp_of_eq t)
(pathover_idp_of_eq b) (pathover_idp_of_eq b)
(pathover_idp_of_eq l) (pathover_idp_of_eq l)
@ -153,7 +153,7 @@ namespace eq
end end
definition squareover_ids_of_square {b₀₀ b₀₂ b₂₀ b₂₂ : B a} definition squareover_ids_of_square {b₀₀ b₀₂ b₂₀ b₂₂ : B a}
(t : b₀₀ = b₂₀) (b : b₀₂ = b₂₂) (l : b₀₀ = b₀₂) (r : b₂₀ = b₂₂) (q : square t b l r) {t : b₀₀ = b₂₀} {b : b₀₂ = b₂₂} {l : b₀₀ = b₀₂} {r : b₂₀ = b₂₂} (q : square t b l r)
: squareover B ids (pathover_idp_of_eq t) : squareover B ids (pathover_idp_of_eq t)
(pathover_idp_of_eq b) (pathover_idp_of_eq b)
(pathover_idp_of_eq l) (pathover_idp_of_eq l)
@ -241,8 +241,16 @@ namespace eq
-- : squareover B s₁₁ q₁₀ q₁₂ !pathover_tr !pathover_tr := -- : squareover B s₁₁ q₁₀ q₁₂ !pathover_tr !pathover_tr :=
-- by induction p;exact vrflo -- by induction p;exact vrflo
/- A version of eq_pathover where the type of the equality also varies -/
definition eq_pathover_dep {f g : Πa, B a} {p : a = a'} {q : f a = g a}
{r : f a' = g a'} (s : squareover B hrfl (pathover_idp_of_eq q) (pathover_idp_of_eq r)
(apdo f p) (apdo g p)) : q =[p] r :=
begin
induction p, apply pathover_idp_of_eq, apply eq_of_vdeg_square, exact square_of_squareover_ids s
end
/- charcaterization of pathovers in pathovers -/ /- charcaterization of pathovers in pathovers -/
-- in this version the fibration (B) of the pathover does not depend on the variable a -- in this version the fibration (B) of the pathover does not depend on the variable (a)
definition pathover_pathover {a' a₂' : A'} {p : a' = a₂'} {f g : A' → A} definition pathover_pathover {a' a₂' : A'} {p : a' = a₂'} {f g : A' → A}
{b : Πa, B (f a)} {b₂ : Πa, B (g a)} {q : Π(a' : A'), f a' = g a'} {b : Πa, B (f a)} {b₂ : Πa, B (g a)} {q : Π(a' : A'), f a' = g a'}
(r : pathover B (b a') (q a') (b₂ a')) (r : pathover B (b a') (q a') (b₂ a'))

View file

@ -14,7 +14,9 @@ See also .set_quotient
* eq_of_rel : Π{a a' : A}, R a a' → class_of a = class_of a' (R explicit) * eq_of_rel : Π{a a' : A}, R a a' → class_of a = class_of a' (R explicit)
-/ -/
open eq equiv sigma.ops import arity cubical.squareover types.arrow cubical.pathover2
open eq equiv sigma sigma.ops equiv.ops pi
namespace quotient namespace quotient
@ -44,11 +46,21 @@ namespace quotient
(Pp : Π⦃a a' : A⦄ (H : R a a'), Pc a ≃ Pc a') : Type := (Pp : Π⦃a a' : A⦄ (H : R a a'), Pc a ≃ Pc a') : Type :=
quotient.elim_type Pc Pp x quotient.elim_type Pc Pp x
theorem elim_type_eq_of_rel (Pc : A → Type) theorem elim_type_eq_of_rel_fn (Pc : A → Type)
(Pp : Π⦃a a' : A⦄ (H : R a a'), Pc a ≃ Pc a') {a a' : A} (H : R a a') (Pp : Π⦃a a' : A⦄ (H : R a a'), Pc a ≃ Pc a') {a a' : A} (H : R a a')
: transport (quotient.elim_type Pc Pp) (eq_of_rel R H) = to_fun (Pp H) := : transport (quotient.elim_type Pc Pp) (eq_of_rel R H) = to_fun (Pp H) :=
by rewrite [tr_eq_cast_ap_fn, ↑quotient.elim_type, elim_eq_of_rel];apply cast_ua_fn by rewrite [tr_eq_cast_ap_fn, ↑quotient.elim_type, elim_eq_of_rel];apply cast_ua_fn
theorem elim_type_eq_of_rel.{u} (Pc : A → Type.{u})
(Pp : Π⦃a a' : A⦄ (H : R a a'), Pc a ≃ Pc a') {a a' : A} (H : R a a') (p : Pc a)
: transport (quotient.elim_type Pc Pp) (eq_of_rel R H) p = to_fun (Pp H) p :=
ap10 (elim_type_eq_of_rel_fn Pc Pp H) p
definition elim_type_eq_of_rel' (Pc : A → Type)
(Pp : Π⦃a a' : A⦄ (H : R a a'), Pc a ≃ Pc a') {a a' : A} (H : R a a') (p : Pc a)
: pathover (quotient.elim_type Pc Pp) p (eq_of_rel R H) (to_fun (Pp H) p) :=
pathover_of_tr_eq (elim_type_eq_of_rel Pc Pp H p)
definition elim_type_uncurried (H : Σ(Pc : A → Type), Π⦃a a' : A⦄ (H : R a a'), Pc a ≃ Pc a') definition elim_type_uncurried (H : Σ(Pc : A → Type), Π⦃a a' : A⦄ (H : R a a'), Pc a ≃ Pc a')
: quotient R → Type := : quotient R → Type :=
quotient.elim_type H.1 H.2 quotient.elim_type H.1 H.2
@ -59,3 +71,120 @@ attribute quotient.elim [unfold 6] [recursor 6]
attribute quotient.elim_type [unfold 5] attribute quotient.elim_type [unfold 5]
attribute quotient.elim_on [unfold 4] attribute quotient.elim_on [unfold 4]
attribute quotient.elim_type_on [unfold 3] attribute quotient.elim_type_on [unfold 3]
namespace quotient
section
variables {A : Type} (R : A → A → Type)
/- The dependent universal property -/
definition quotient_pi_equiv (C : quotient R → Type) : (Πx, C x) ≃
(Σ(f : Π(a : A), C (class_of R a)), Π⦃a a' : A⦄ (H : R a a'), f a =[eq_of_rel R H] f a') :=
begin
fapply equiv.MK,
{ intro f, exact ⟨λa, f (class_of R a), λa a' H, apdo f (eq_of_rel R H)⟩},
{ intro v x, induction v with i p, induction x,
exact (i a),
exact (p H)},
{ intro v, induction v with i p, esimp,
apply ap (sigma.mk i), apply eq_of_homotopy3, intro a a' H, apply rec_eq_of_rel},
{ intro f, apply eq_of_homotopy, intro x, induction x: esimp,
apply eq_pathover_dep, esimp, rewrite rec_eq_of_rel, exact hrflo},
end
end
/- the flattening lemma -/
namespace flattening
section
parameters {A : Type} (R : A → A → Type) (C : A → Type) (f : Π⦃a a'⦄, R a a' → C a ≃ C a')
include f
variables {a a' : A} {r : R a a'}
local abbreviation P [unfold 5] := quotient.elim_type C f
definition flattening_type : Type := Σa, C a
local abbreviation X := flattening_type
inductive flattening_rel : X → X → Type :=
| mk : Π⦃a a' : A⦄ (r : R a a') (c : C a), flattening_rel ⟨a, c⟩ ⟨a', f r c⟩
definition Ppt [constructor] (c : C a) : sigma P :=
⟨class_of R a, c⟩
definition Peq (r : R a a') (c : C a) : Ppt c = Ppt (f r c) :=
begin
fapply sigma_eq: esimp,
{ apply eq_of_rel R r},
{ refine elim_type_eq_of_rel' C f r c}
end
definition rec {Q : sigma P → Type} (Qpt : Π{a : A} (x : C a), Q (Ppt x))
(Qeq : Π⦃a a' : A⦄ (r : R a a') (c : C a), Qpt c =[Peq r c] Qpt (f r c))
(v : sigma P) : Q v :=
begin
induction v with q p,
induction q,
{ exact Qpt p},
{ apply pi_pathover_left', esimp, intro c,
refine _ ⬝op apd Qpt (elim_type_eq_of_rel C f H c)⁻¹ᵖ,
refine _ ⬝op (tr_compose Q Ppt _ _)⁻¹ ,
rewrite ap_inv,
refine pathover_cancel_right _ !tr_pathover⁻¹ᵒ,
refine change_path _ (Qeq H c),
symmetry, rewrite [↑[Ppt, Peq]],
refine whisker_left _ !ap_dpair ⬝ _,
refine !dpair_eq_dpair_con⁻¹ ⬝ _, esimp,
apply ap (dpair_eq_dpair _),
esimp [elim_type_eq_of_rel',pathover_idp_of_eq],
exact !pathover_of_tr_eq_eq_concato⁻¹},
end
definition elim {Q : Type} (Qpt : Π{a : A}, C a → Q)
(Qeq : Π⦃a a' : A⦄ (r : R a a') (c : C a), Qpt c = Qpt (f r c))
(v : sigma P) : Q :=
begin
induction v with q p,
induction q,
{ exact Qpt p},
{ apply arrow_pathover_constant_right, esimp,
intro c, exact Qeq H c ⬝ ap Qpt (elim_type_eq_of_rel C f H c)⁻¹},
end
theorem elim_Peq {Q : Type} (Qpt : Π{a : A}, C a → Q)
(Qeq : Π⦃a a' : A⦄ (r : R a a') (c : C a), Qpt c = Qpt (f r c)) {a a' : A} (r : R a a')
(c : C a) : ap (elim @Qpt Qeq) (Peq r c) = Qeq r c :=
begin
refine !ap_dpair_eq_dpair ⬝ _,
rewrite [apo011_eq_apo11_apdo, rec_eq_of_rel, ▸*, apo011_arrow_pathover_constant_right,
↑elim_type_eq_of_rel', to_right_inv !pathover_equiv_tr_eq, ap_inv],
apply inv_con_cancel_right
end
open flattening_rel
definition flattening_lemma : sigma P ≃ quotient flattening_rel :=
begin
fapply equiv.MK,
{ refine elim _ _,
{ intro a c, exact class_of _ ⟨a, c⟩},
{ intro a a' r c, apply eq_of_rel, constructor}},
{ intro q, induction q with x x x' H,
{ exact Ppt x.2},
{ induction H, esimp, apply Peq}},
{ intro q, induction q with x x x' H: esimp,
{ induction x with a c, reflexivity},
{ induction H, esimp, apply eq_pathover, apply hdeg_square,
refine ap_compose (elim _ _) (quotient.elim _ _) _ ⬝ _,
rewrite [elim_eq_of_rel, ap_id, ▸*],
apply elim_Peq}},
{ refine rec (λa x, idp) _, intros,
apply eq_pathover, apply hdeg_square,
refine ap_compose (quotient.elim _ _) (elim _ _) _ ⬝ _,
rewrite [elim_Peq, ap_id, ▸*],
apply elim_eq_of_rel}
end
end
end flattening
end quotient

View file

@ -12,7 +12,7 @@ import .path .equiv
open equiv is_equiv equiv.ops function open equiv is_equiv equiv.ops function
variables {A A' : Type} {B B' : A → Type} {B'' : A' → Type} {C : Π⦃a⦄, B a → Type} variables {A A' : Type} {B B' : A → Type} {B'' : A' → Type} {C : Π⦃a⦄, B a → Type}
{a a₂ a₃ a₄ : A} {p p' : a = a₂} {p₂ : a₂ = a₃} {p₃ : a₃ = a₄} {a a₂ a₃ a₄ : A} {p p' : a = a₂} {p₂ : a₂ = a₃} {p₃ : a₃ = a₄} {p₁₃ : a = a₃}
{b b' : B a} {b₂ b₂' : B a₂} {b₃ : B a₃} {b₄ : B a₄} {b b' : B a} {b₂ b₂' : B a₂} {b₃ : B a₃} {b₄ : B a₄}
{c : C b} {c₂ : C b₂} {c : C b} {c₂ : C b₂}
@ -79,13 +79,28 @@ namespace eq
definition eq_concato [unfold 9] (q : b = b') (r : b' =[p] b₂) : b =[p] b₂ := definition eq_concato [unfold 9] (q : b = b') (r : b' =[p] b₂) : b =[p] b₂ :=
by induction q;exact r by induction q;exact r
definition change_path [unfold 9] (q : p = p') (r : b =[p] b₂) : b =[p'] b₂ :=
q ▸ r
-- infix ` ⬝ ` := concato -- infix ` ⬝ ` := concato
infix `⬝o`:75 := concato infix ` ⬝o `:72 := concato
infix `⬝op`:75 := concato_eq infix ` ⬝op `:73 := concato_eq
infix `⬝po`:75 := eq_concato infix ` ⬝po `:73 := eq_concato
-- postfix `⁻¹` := inverseo -- postfix `⁻¹` := inverseo
postfix `⁻¹ᵒ`:(max+10) := inverseo postfix `⁻¹ᵒ`:(max+10) := inverseo
definition pathover_cancel_right (q : b =[p ⬝ p₂] b₃) (r : b₃ =[p₂⁻¹] b₂) : b =[p] b₂ :=
change_path !con_inv_cancel_right (q ⬝o r)
definition pathover_cancel_right' (q : b =[p₁₃ ⬝ p₂⁻¹] b₂) (r : b₂ =[p₂] b₃) : b =[p₁₃] b₃ :=
change_path !inv_con_cancel_right (q ⬝o r)
definition pathover_cancel_left (q : b₂ =[p⁻¹] b) (r : b =[p ⬝ p₂] b₃) : b₂ =[p₂] b₃ :=
change_path !inv_con_cancel_left (q ⬝o r)
definition pathover_cancel_left' (q : b =[p] b₂) (r : b₂ =[p⁻¹ ⬝ p₁₃] b₃) : b =[p₁₃] b₃ :=
change_path !con_inv_cancel_left (q ⬝o r)
/- Some of the theorems analogous to theorems for = in init.path -/ /- Some of the theorems analogous to theorems for = in init.path -/
definition cono_idpo (r : b =[p] b₂) : r ⬝o idpo =[con_idp p] r := definition cono_idpo (r : b =[p] b₂) : r ⬝o idpo =[con_idp p] r :=
@ -111,7 +126,7 @@ namespace eq
definition eq_of_pathover {a' a₂' : A'} (q : a' =[p] a₂') : a' = a₂' := definition eq_of_pathover {a' a₂' : A'} (q : a' =[p] a₂') : a' = a₂' :=
by cases q;reflexivity by cases q;reflexivity
definition pathover_of_eq {a' a₂' : A'} (q : a' = a₂') : a' =[p] a₂' := definition pathover_of_eq [unfold 5 8] {a' a₂' : A'} (q : a' = a₂') : a' =[p] a₂' :=
by cases p;cases q;constructor by cases p;cases q;constructor
definition pathover_constant [constructor] (p : a = a₂) (a' a₂' : A') : a' =[p] a₂' ≃ a' = a₂' := definition pathover_constant [constructor] (p : a = a₂) (a' a₂' : A') : a' =[p] a₂' ≃ a' = a₂' :=
@ -191,10 +206,16 @@ namespace eq
eq.rec_on p idp eq.rec_on p idp
definition pathover_of_pathover_tr (q : b =[p ⬝ p₂] p₂ ▸ b₂) : b =[p] b₂ := definition pathover_of_pathover_tr (q : b =[p ⬝ p₂] p₂ ▸ b₂) : b =[p] b₂ :=
by cases p₂;exact q pathover_cancel_right q !pathover_tr⁻¹ᵒ
definition pathover_tr_of_pathover {p : a = a₃} (q : b =[p ⬝ p₂⁻¹] b₂) : b =[p] p₂ ▸ b₂ := definition pathover_tr_of_pathover (q : b =[p₁₃ ⬝ p₂⁻¹] b₂) : b =[p₁₃] p₂ ▸ b₂ :=
by cases p₂;exact q pathover_cancel_right' q !pathover_tr
definition pathover_of_tr_pathover (q : p ▸ b =[p⁻¹ ⬝ p₁₃] b₃) : b =[p₁₃] b₃ :=
pathover_cancel_left' !pathover_tr q
definition tr_pathover_of_pathover (q : b =[p ⬝ p₂] b₃) : p ▸ b =[p₂] b₃ :=
pathover_cancel_left !pathover_tr⁻¹ᵒ q
definition pathover_tr_of_eq (q : b = b') : b =[p] p ▸ b' := definition pathover_tr_of_eq (q : b = b') : b =[p] p ▸ b' :=
by cases q;apply pathover_tr by cases q;apply pathover_tr
@ -216,7 +237,7 @@ namespace eq
(q : b =[p] b₂) : g a b =[p] g a₂ b₂ := (q : b =[p] b₂) : g a b =[p] g a₂ b₂ :=
by induction q; constructor by induction q; constructor
definition apo011 (f : Πa, B a → A') (Ha : a = a₂) (Hb : b =[Ha] b₂) definition apo011 [unfold 10] (f : Πa, B a → A') (Ha : a = a₂) (Hb : b =[Ha] b₂)
: f a b = f a₂ b₂ := : f a b = f a₂ b₂ :=
by cases Hb; reflexivity by cases Hb; reflexivity
@ -224,7 +245,7 @@ namespace eq
(Hc : c =[apo011 C Ha Hb] c₂) : f a b c = f a₂ b₂ c₂ := (Hc : c =[apo011 C Ha Hb] c₂) : f a b c = f a₂ b₂ c₂ :=
by cases Hb; apply (idp_rec_on Hc); apply idp by cases Hb; apply (idp_rec_on Hc); apply idp
definition apo11 {f : Πb, C b} {g : Πb₂, C b₂} (r : f =[p] g) definition apod11 {f : Πb, C b} {g : Πb₂, C b₂} (r : f =[p] g)
{b : B a} {b₂ : B a₂} (q : b =[p] b₂) : f b =[apo011 C p q] g b₂ := {b : B a} {b₂ : B a₂} (q : b =[p] b₂) : f b =[apo011 C p q] g b₂ :=
by cases r; apply (idp_rec_on q); constructor by cases r; apply (idp_rec_on q); constructor
@ -236,6 +257,10 @@ namespace eq
(b : B a) : f b =[p] g (p ▸ b) := (b : B a) : f b =[p] g (p ▸ b) :=
by cases r; constructor by cases r; constructor
definition apo11 {f : B a → B' a} {g : B a₂ → B' a₂} (r : f =[p] g)
(q : b =[p] b₂) : f b =[p] g b₂ :=
by induction q; exact apo10 r b
definition apdo_compose1 (g : Πa, B a → B' a) (f : Πa, B a) (p : a = a₂) definition apdo_compose1 (g : Πa, B a → B' a) (f : Πa, B a) (p : a = a₂)
: apdo (g ∘' f) p = apo g (apdo f p) := : apdo (g ∘' f) p = apo g (apdo f p) :=
by induction p; reflexivity by induction p; reflexivity
@ -260,9 +285,6 @@ namespace eq
: eq_concato q⁻¹ (pathover_idp_of_eq q) = (idpo : b' =[refl a] b') := : eq_concato q⁻¹ (pathover_idp_of_eq q) = (idpo : b' =[refl a] b') :=
by induction q;constructor by induction q;constructor
definition change_path [unfold 9] (q : p = p') (r : b =[p] b₂) : b =[p'] b₂ :=
q ▸ r
definition change_path_equiv (f : Π{a}, B a ≃ B' a) (r : b =[p] b₂) : f b =[p] f b₂ := definition change_path_equiv (f : Π{a}, B a ≃ B' a) (r : b =[p] b₂) : f b =[p] f b₂ :=
by induction r;constructor by induction r;constructor

View file

@ -33,7 +33,7 @@ end unit
-- ---------- -- ----------
notation `Σ` binders `, ` r:(scoped P, sigma P) := r notation `Σ` binders `, ` r:(scoped P, sigma P) := r
abbreviation dpair [constructor] := @sigma.mk
namespace sigma namespace sigma
notation `⟨`:max t:(foldr `, ` (e r, mk e r)) `⟩`:0 := t --input ⟨ ⟩ as \< \> notation `⟨`:max t:(foldr `, ` (e r, mk e r)) `⟩`:0 := t --input ⟨ ⟩ as \< \>

View file

@ -13,8 +13,8 @@ open eq equiv is_equiv funext pi equiv.ops is_trunc unit
namespace pi namespace pi
variables {A A' : Type} {B B' : Type} {C : A → B → Type} variables {A A' : Type} {B B' : Type} {C : A → B → Type} {D : A → Type}
{a a' a'' : A} {b b' b'' : B} {f g : A → B} {a a' a'' : A} {b b' b'' : B} {f g : A → B} {d : D a} {d' : D a'}
-- all lemmas here are special cases of the ones for pi-types -- all lemmas here are special cases of the ones for pi-types
@ -94,7 +94,7 @@ namespace pi
definition arrow_pathover_left {B C : A → Type} {f : B a → C a} {g : B a' → C a'} {p : a = a'} definition arrow_pathover_left {B C : A → Type} {f : B a → C a} {g : B a' → C a'} {p : a = a'}
(r : Π(b : B a), f b =[p] g (p ▸ b)) : f =[p] g := (r : Π(b : B a), f b =[p] g (p ▸ b)) : f =[p] g :=
begin begin
cases p, apply pathover_idp_of_eq, induction p, apply pathover_idp_of_eq,
apply eq_of_homotopy, intro b, apply eq_of_homotopy, intro b,
exact eq_of_pathover_idp (r b), exact eq_of_pathover_idp (r b),
end end
@ -111,10 +111,28 @@ namespace pi
{p : a = a'} (r : Π(b : B), f b =[p] g b) : f =[p] g := {p : a = a'} (r : Π(b : B), f b =[p] g b) : f =[p] g :=
pi_pathover_constant r pi_pathover_constant r
definition arrow_pathover_constant_right {B : A → Type} {C : Type} {f : B a → C} {g : B a' → C} definition arrow_pathover_constant_right' {B : A → Type} {C : Type}
{p : a = a'} (r : Π(b : B a), f b = g (p ▸ b)) : f =[p] g := {f : B a → C} {g : B a' → C} {p : a = a'}
(r : Π⦃b : B a⦄ ⦃b' : B a'⦄ (q : b =[p] b'), f b = g b') : f =[p] g :=
arrow_pathover (λb b' q, pathover_of_eq (r q))
definition arrow_pathover_constant_right {B : A → Type} {C : Type} {f : B a → C}
{g : B a' → C} {p : a = a'} (r : Π(b : B a), f b = g (p ▸ b)) : f =[p] g :=
arrow_pathover_left (λb, pathover_of_eq (r b)) arrow_pathover_left (λb, pathover_of_eq (r b))
/- a lemma used for the flattening lemma -/
definition apo011_arrow_pathover_constant_right {f : D a → A'} {g : D a' → A'} {p : a = a'}
{q : d =[p] d'} (r : Π(d : D a), f d = g (p ▸ d))
: eq_of_pathover (apo11 (arrow_pathover_constant_right r) q) = r d ⬝ ap g (tr_eq_of_pathover q)
:=
begin
induction q, esimp at r,
eapply homotopy.rec_on r, clear r, esimp, intro r, induction r, esimp,
esimp [arrow_pathover_constant_right, arrow_pathover_left],
rewrite [eq_of_homotopy_idp]
end
/- /-
The fact that the arrow type preserves truncation level is a direct consequence The fact that the arrow type preserves truncation level is a direct consequence
of the fact that pi's preserve truncation level of the fact that pi's preserve truncation level

View file

@ -77,17 +77,6 @@ namespace pi
apply eq_of_pathover_idp, apply r apply eq_of_pathover_idp, apply r
end end
-- a version where C is uncurried, but where the conclusion of r is still a proper pathover
-- instead of a heterogenous equality
definition pi_pathover' {C : (Σa, B a) → Type} {f : Πb, C ⟨a, b⟩} {g : Πb', C ⟨a', b'⟩}
{p : a = a'} (r : Π(b : B a) (b' : B a') (q : b =[p] b'), f b =[dpair_eq_dpair p q] g b')
: f =[p] g :=
begin
cases p, apply pathover_idp_of_eq,
apply eq_of_homotopy, intro b,
apply (@eq_of_pathover_idp _ C), exact (r b b (pathover.idpatho b)),
end
definition pi_pathover_left {f : Πb, C a b} {g : Πb', C a' b'} {p : a = a'} definition pi_pathover_left {f : Πb, C a b} {g : Πb', C a' b'} {p : a = a'}
(r : Π(b : B a), f b =[apo011 C p !pathover_tr] g (p ▸ b)) : f =[p] g := (r : Π(b : B a), f b =[apo011 C p !pathover_tr] g (p ▸ b)) : f =[p] g :=
begin begin
@ -113,6 +102,36 @@ namespace pi
exact eq_of_pathover_idp (r b), exact eq_of_pathover_idp (r b),
end end
-- a version where C is uncurried, but where the conclusion of r is still a proper pathover
-- instead of a heterogenous equality
definition pi_pathover' {C : (Σa, B a) → Type} {f : Πb, C ⟨a, b⟩} {g : Πb', C ⟨a', b'⟩}
{p : a = a'} (r : Π(b : B a) (b' : B a') (q : b =[p] b'), f b =[dpair_eq_dpair p q] g b')
: f =[p] g :=
begin
cases p, apply pathover_idp_of_eq,
apply eq_of_homotopy, intro b,
apply (@eq_of_pathover_idp _ C), exact (r b b (pathover.idpatho b)),
end
definition pi_pathover_left' {C : (Σa, B a) → Type} {f : Πb, C ⟨a, b⟩} {g : Πb', C ⟨a', b'⟩}
{p : a = a'} (r : Π(b : B a), f b =[dpair_eq_dpair p !pathover_tr] g (p ▸ b))
: f =[p] g :=
begin
cases p, apply pathover_idp_of_eq,
apply eq_of_homotopy, intro b,
apply eq_of_pathover_idp, esimp at r, exact !pathover_ap (r b)
end
definition pi_pathover_right' {C : (Σa, B a) → Type} {f : Πb, C ⟨a, b⟩} {g : Πb', C ⟨a', b'⟩}
{p : a = a'} (r : Π(b' : B a'), f (p⁻¹ ▸ b') =[dpair_eq_dpair p !tr_pathover] g b')
: f =[p] g :=
begin
cases p, apply pathover_idp_of_eq,
apply eq_of_homotopy, intro b,
apply eq_of_pathover_idp, esimp at r, exact !pathover_ap (r b)
end
/- Maps on paths -/ /- Maps on paths -/
/- The action of maps given by lambda. -/ /- The action of maps given by lambda. -/

View file

@ -29,10 +29,10 @@ namespace sigma
definition eta3 : Π (u : Σa b c, D a b c), ⟨u.1, u.2.1, u.2.2.1, u.2.2.2⟩ = u definition eta3 : Π (u : Σa b c, D a b c), ⟨u.1, u.2.1, u.2.2.1, u.2.2.2⟩ = u
| eta3 ⟨u₁, u₂, u₃, u₄⟩ := idp | eta3 ⟨u₁, u₂, u₃, u₄⟩ := idp
definition dpair_eq_dpair (p : a = a') (q : b =[p] b') : ⟨a, b⟩ = ⟨a', b'⟩ := definition dpair_eq_dpair [unfold 8] (p : a = a') (q : b =[p] b') : ⟨a, b⟩ = ⟨a', b'⟩ :=
by induction q; reflexivity apo011 sigma.mk p q
definition sigma_eq (p : u.1 = v.1) (q : u.2 =[p] v.2) : u = v := definition sigma_eq [unfold 3 4] (p : u.1 = v.1) (q : u.2 =[p] v.2) : u = v :=
by induction u; induction v; exact (dpair_eq_dpair p q) by induction u; induction v; exact (dpair_eq_dpair p q)
definition eq_pr1 [unfold 5] (p : u = v) : u.1 = v.1 := definition eq_pr1 [unfold 5] (p : u = v) : u.1 = v.1 :=
@ -157,6 +157,10 @@ namespace sigma
definition sigma_eq2_unc {p q : u = v} (rs : Σ(r : p..1 = q..1), p..2 =[r] q..2) : p = q := definition sigma_eq2_unc {p q : u = v} (rs : Σ(r : p..1 = q..1), p..2 =[r] q..2) : p = q :=
destruct rs sigma_eq2 destruct rs sigma_eq2
definition ap_dpair_eq_dpair (f : Πa, B a → A') (p : a = a') (q : b =[p] b')
: ap (sigma.rec f) (dpair_eq_dpair p q) = apo011 f p q :=
by induction q; reflexivity
/- Transport -/ /- Transport -/
/- The concrete description of transport in sigmas (and also pis) is rather trickier than in the other types. In particular, these cannot be described just in terms of transport in simpler types; they require also the dependent transport [transportD]. /- The concrete description of transport in sigmas (and also pis) is rather trickier than in the other types. In particular, these cannot be described just in terms of transport in simpler types; they require also the dependent transport [transportD].