feat(kernel/builtin): add is_* functions
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
This commit is contained in:
parent
18eb9e427f
commit
a9eb2a9307
4 changed files with 83 additions and 22 deletions
|
@ -66,9 +66,7 @@ public:
|
||||||
};
|
};
|
||||||
expr const Bool = mk_value(*(new bool_type_value()));
|
expr const Bool = mk_value(*(new bool_type_value()));
|
||||||
expr mk_bool_type() { return Bool; }
|
expr mk_bool_type() { return Bool; }
|
||||||
bool is_bool(expr const & e) {
|
MK_IS_BUILTIN(is_bool, Bool)
|
||||||
return e == Bool || (is_constant(e) && const_name(e) == to_value(Bool).get_name());
|
|
||||||
}
|
|
||||||
// =======================================
|
// =======================================
|
||||||
|
|
||||||
// =======================================
|
// =======================================
|
||||||
|
@ -153,16 +151,48 @@ public:
|
||||||
}
|
}
|
||||||
};
|
};
|
||||||
MK_BUILTIN(if_fn, if_fn_value);
|
MK_BUILTIN(if_fn, if_fn_value);
|
||||||
|
MK_IS_BUILTIN(is_if_fn, mk_if_fn());
|
||||||
|
bool is_if(expr const & n, expr & c, expr & t, expr & e) {
|
||||||
|
if (is_if(n)) {
|
||||||
|
c = arg(n, 2);
|
||||||
|
t = arg(n, 3);
|
||||||
|
e = arg(n, 4);
|
||||||
|
return true;
|
||||||
|
} else {
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
}
|
||||||
// =======================================
|
// =======================================
|
||||||
|
|
||||||
MK_CONSTANT(implies_fn, name("implies"));
|
MK_CONSTANT(implies_fn, name("implies"));
|
||||||
|
MK_IS_BINARY_APP(is_implies)
|
||||||
MK_CONSTANT(iff_fn, name("iff"));
|
MK_CONSTANT(iff_fn, name("iff"));
|
||||||
|
MK_IS_BINARY_APP(is_iff)
|
||||||
MK_CONSTANT(and_fn, name("and"));
|
MK_CONSTANT(and_fn, name("and"));
|
||||||
|
MK_IS_BINARY_APP(is_and)
|
||||||
MK_CONSTANT(or_fn, name("or"));
|
MK_CONSTANT(or_fn, name("or"));
|
||||||
|
MK_IS_BINARY_APP(is_or)
|
||||||
MK_CONSTANT(not_fn, name("not"));
|
MK_CONSTANT(not_fn, name("not"));
|
||||||
|
bool is_not(expr const & e, expr & a) {
|
||||||
|
if (is_not(e)) {
|
||||||
|
a = arg(e, 1);
|
||||||
|
return true;
|
||||||
|
} else {
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
}
|
||||||
MK_CONSTANT(forall_fn, name("forall"));
|
MK_CONSTANT(forall_fn, name("forall"));
|
||||||
MK_CONSTANT(exists_fn, name("exists"));
|
MK_CONSTANT(exists_fn, name("exists"));
|
||||||
MK_CONSTANT(homo_eq_fn, name("eq"));
|
MK_CONSTANT(homo_eq_fn, name("eq"));
|
||||||
|
bool is_homo_eq(expr const & e, expr & lhs, expr & rhs) {
|
||||||
|
if (is_homo_eq(e)) {
|
||||||
|
lhs = arg(e, 2);
|
||||||
|
rhs = arg(e, 3);
|
||||||
|
return true;
|
||||||
|
} else {
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
// Axioms
|
// Axioms
|
||||||
MK_CONSTANT(mp_fn, name("MP"));
|
MK_CONSTANT(mp_fn, name("MP"));
|
||||||
|
|
|
@ -51,6 +51,9 @@ bool is_false(expr const & e);
|
||||||
|
|
||||||
/** \brief Return the Lean If-Then-Else operator. It has type: pi (A : Type), bool -> A -> A -> A */
|
/** \brief Return the Lean If-Then-Else operator. It has type: pi (A : Type), bool -> A -> A -> A */
|
||||||
expr mk_if_fn();
|
expr mk_if_fn();
|
||||||
|
bool is_if_fn(expr const & e);
|
||||||
|
inline bool is_if(expr const & e) { return is_app(e) && is_if_fn(arg(e, 0)); }
|
||||||
|
bool is_if(expr const & n, expr & c, expr & t, expr & e);
|
||||||
/** \brief Return the term (if A c t e) */
|
/** \brief Return the term (if A c t e) */
|
||||||
inline expr mk_if(expr const & A, expr const & c, expr const & t, expr const & e) { return mk_app(mk_if_fn(), A, c, t, e); }
|
inline expr mk_if(expr const & A, expr const & c, expr const & t, expr const & e) { return mk_app(mk_if_fn(), A, c, t, e); }
|
||||||
inline expr If(expr const & A, expr const & c, expr const & t, expr const & e) { return mk_if(A, c, t, e); }
|
inline expr If(expr const & A, expr const & c, expr const & t, expr const & e) { return mk_if(A, c, t, e); }
|
||||||
|
@ -60,6 +63,9 @@ inline expr bIf(expr const & c, expr const & t, expr const & e) { return mk_bool
|
||||||
|
|
||||||
/** \brief Return the Lean Implies operator */
|
/** \brief Return the Lean Implies operator */
|
||||||
expr mk_implies_fn();
|
expr mk_implies_fn();
|
||||||
|
bool is_implies_fn(expr const & e);
|
||||||
|
inline bool is_implies(expr const & e) { return is_app(e) && is_implies_fn(arg(e, 0)); }
|
||||||
|
bool is_implies(expr const & e, expr & a1, expr & a2);
|
||||||
/** \brief Return the term (e1 => e2) */
|
/** \brief Return the term (e1 => e2) */
|
||||||
inline expr mk_implies(expr const & e1, expr const & e2) { return mk_app(mk_implies_fn(), e1, e2); }
|
inline expr mk_implies(expr const & e1, expr const & e2) { return mk_app(mk_implies_fn(), e1, e2); }
|
||||||
inline expr mk_implies(unsigned num_args, expr const * args) { lean_assert(num_args >= 2); return mk_bin_rop(mk_implies_fn(), False, num_args, args); }
|
inline expr mk_implies(unsigned num_args, expr const * args) { lean_assert(num_args >= 2); return mk_bin_rop(mk_implies_fn(), False, num_args, args); }
|
||||||
|
@ -68,6 +74,9 @@ inline expr Implies(std::initializer_list<expr> const & l) { return mk_implies(l
|
||||||
|
|
||||||
/** \brief Return the Lean Iff operator */
|
/** \brief Return the Lean Iff operator */
|
||||||
expr mk_iff_fn();
|
expr mk_iff_fn();
|
||||||
|
bool is_iff_fn(expr const & e);
|
||||||
|
inline bool is_iff(expr const & e) { return is_app(e) && is_iff_fn(arg(e, 0)); }
|
||||||
|
bool is_iff(expr const & e, expr & a1, expr & a2);
|
||||||
/** \brief Return (e1 iff e2) */
|
/** \brief Return (e1 iff e2) */
|
||||||
inline expr mk_iff(expr const & e1, expr const & e2) { return mk_app(mk_iff_fn(), e1, e2); }
|
inline expr mk_iff(expr const & e1, expr const & e2) { return mk_app(mk_iff_fn(), e1, e2); }
|
||||||
inline expr mk_iff(unsigned num_args, expr const * args) { return mk_bin_rop(mk_iff_fn(), True, num_args, args); }
|
inline expr mk_iff(unsigned num_args, expr const * args) { return mk_bin_rop(mk_iff_fn(), True, num_args, args); }
|
||||||
|
@ -76,6 +85,9 @@ inline expr Iff(std::initializer_list<expr> const & l) { return mk_iff(l.size(),
|
||||||
|
|
||||||
/** \brief Return the Lean And operator */
|
/** \brief Return the Lean And operator */
|
||||||
expr mk_and_fn();
|
expr mk_and_fn();
|
||||||
|
bool is_and_fn(expr const & e);
|
||||||
|
inline bool is_and(expr const & e) { return is_app(e) && is_and_fn(arg(e, 0)); }
|
||||||
|
bool is_and(expr const & e, expr & a1, expr & a2);
|
||||||
/** \brief Return (e1 and e2) */
|
/** \brief Return (e1 and e2) */
|
||||||
inline expr mk_and(expr const & e1, expr const & e2) { return mk_app(mk_and_fn(), e1, e2); }
|
inline expr mk_and(expr const & e1, expr const & e2) { return mk_app(mk_and_fn(), e1, e2); }
|
||||||
inline expr mk_and(unsigned num_args, expr const * args) { return mk_bin_rop(mk_and_fn(), True, num_args, args); }
|
inline expr mk_and(unsigned num_args, expr const * args) { return mk_bin_rop(mk_and_fn(), True, num_args, args); }
|
||||||
|
@ -84,6 +96,9 @@ inline expr And(std::initializer_list<expr> const & l) { return mk_and(l.size(),
|
||||||
|
|
||||||
/** \brief Return the Lean Or operator */
|
/** \brief Return the Lean Or operator */
|
||||||
expr mk_or_fn();
|
expr mk_or_fn();
|
||||||
|
bool is_or_fn(expr const & e);
|
||||||
|
inline bool is_or(expr const & e) { return is_app(e) && is_or_fn(arg(e, 0)); }
|
||||||
|
bool is_or(expr const & e, expr & a1, expr & a2);
|
||||||
/** \brief Return (e1 Or e2) */
|
/** \brief Return (e1 Or e2) */
|
||||||
inline expr mk_or(expr const & e1, expr const & e2) { return mk_app(mk_or_fn(), e1, e2); }
|
inline expr mk_or(expr const & e1, expr const & e2) { return mk_app(mk_or_fn(), e1, e2); }
|
||||||
inline expr mk_or(unsigned num_args, expr const * args) { return mk_bin_rop(mk_or_fn(), False, num_args, args); }
|
inline expr mk_or(unsigned num_args, expr const * args) { return mk_bin_rop(mk_or_fn(), False, num_args, args); }
|
||||||
|
@ -92,24 +107,34 @@ inline expr Or(std::initializer_list<expr> const & l) { return mk_or(l.size(), l
|
||||||
|
|
||||||
/** \brief Return the Lean not operator */
|
/** \brief Return the Lean not operator */
|
||||||
expr mk_not_fn();
|
expr mk_not_fn();
|
||||||
|
bool is_not_fn(expr const & e);
|
||||||
|
inline bool is_not(expr const & e) { return is_app(e) && is_not_fn(arg(e, 0)); }
|
||||||
|
bool is_not(expr const & e, expr & a1);
|
||||||
/** \brief Return (Not e) */
|
/** \brief Return (Not e) */
|
||||||
inline expr mk_not(expr const & e) { return mk_app(mk_not_fn(), e); }
|
inline expr mk_not(expr const & e) { return mk_app(mk_not_fn(), e); }
|
||||||
inline expr Not(expr const & e) { return mk_not(e); }
|
inline expr Not(expr const & e) { return mk_not(e); }
|
||||||
|
|
||||||
/** \brief Return the Lean forall operator. It has type: <tt>Pi (A : Type), (A -> bool) -> Bool</tt> */
|
/** \brief Return the Lean forall operator. It has type: <tt>Pi (A : Type), (A -> bool) -> Bool</tt> */
|
||||||
expr mk_forall_fn();
|
expr mk_forall_fn();
|
||||||
|
bool is_forall_fn(expr const & e);
|
||||||
|
inline bool is_forall(expr const & e) { return is_app(e) && is_forall_fn(arg(e, 0)); }
|
||||||
/** \brief Return the term (Forall A P), where A is a type and P : A -> bool */
|
/** \brief Return the term (Forall A P), where A is a type and P : A -> bool */
|
||||||
inline expr mk_forall(expr const & A, expr const & P) { return mk_app(mk_forall_fn(), A, P); }
|
inline expr mk_forall(expr const & A, expr const & P) { return mk_app(mk_forall_fn(), A, P); }
|
||||||
inline expr Forall(expr const & A, expr const & P) { return mk_forall(A, P); }
|
inline expr Forall(expr const & A, expr const & P) { return mk_forall(A, P); }
|
||||||
|
|
||||||
/** \brief Return the Lean exists operator. It has type: <tt>Pi (A : Type), (A -> Bool) -> Bool</tt> */
|
/** \brief Return the Lean exists operator. It has type: <tt>Pi (A : Type), (A -> Bool) -> Bool</tt> */
|
||||||
expr mk_exists_fn();
|
expr mk_exists_fn();
|
||||||
|
bool is_exists_fn(expr const & e);
|
||||||
|
inline bool is_exists(expr const & e) { return is_app(e) && is_exists_fn(arg(e, 0)); }
|
||||||
/** \brief Return the term (exists A P), where A is a type and P : A -> bool */
|
/** \brief Return the term (exists A P), where A is a type and P : A -> bool */
|
||||||
inline expr mk_exists(expr const & A, expr const & P) { return mk_app(mk_exists_fn(), A, P); }
|
inline expr mk_exists(expr const & A, expr const & P) { return mk_app(mk_exists_fn(), A, P); }
|
||||||
inline expr Exists(expr const & A, expr const & P) { return mk_exists(A, P); }
|
inline expr Exists(expr const & A, expr const & P) { return mk_exists(A, P); }
|
||||||
|
|
||||||
/** \brief Homogeneous equality. It has type: <tt>Pi (A : Type), A -> A -> Bool</tt> */
|
/** \brief Homogeneous equality. It has type: <tt>Pi (A : Type), A -> A -> Bool</tt> */
|
||||||
expr mk_homo_eq_fn();
|
expr mk_homo_eq_fn();
|
||||||
|
bool is_homo_eq_fn(expr const & e);
|
||||||
|
inline bool is_homo_eq(expr const & e) { return is_app(e) && is_homo_eq_fn(arg(e, 0)); }
|
||||||
|
bool is_homo_eq(expr const & e, expr & a1, expr & a2);
|
||||||
/** \brief Return the term (homo_eq A l r) */
|
/** \brief Return the term (homo_eq A l r) */
|
||||||
inline expr mk_homo_eq(expr const & A, expr const & l, expr const & r) { return mk_app(mk_homo_eq_fn(), A, l, r); }
|
inline expr mk_homo_eq(expr const & A, expr const & l, expr const & r) { return mk_app(mk_homo_eq_fn(), A, l, r); }
|
||||||
inline expr hEq(expr const & A, expr const & l, expr const & r) { return mk_homo_eq(A, l, r); }
|
inline expr hEq(expr const & A, expr const & l, expr const & r) { return mk_homo_eq(A, l, r); }
|
||||||
|
@ -177,5 +202,25 @@ static name Name ## _name = NameObj; \
|
||||||
expr mk_##Name() { \
|
expr mk_##Name() { \
|
||||||
static thread_local expr r = mk_constant(Name ## _name); \
|
static thread_local expr r = mk_constant(Name ## _name); \
|
||||||
return r ; \
|
return r ; \
|
||||||
|
} \
|
||||||
|
bool is_ ## Name(expr const & e) { \
|
||||||
|
return is_constant(e) && const_name(e) == Name ## _name; \
|
||||||
|
}
|
||||||
|
|
||||||
|
#define MK_IS_BUILTIN(Name, Builtin) \
|
||||||
|
bool Name(expr const & e) { \
|
||||||
|
expr const & v = Builtin; \
|
||||||
|
return e == v || (is_constant(e) && const_name(e) == to_value(v).get_name()); \
|
||||||
|
}
|
||||||
|
|
||||||
|
#define MK_IS_BINARY_APP(Name) \
|
||||||
|
bool Name(expr const & e, expr & a1, expr & a2) { \
|
||||||
|
if (Name(e)) { \
|
||||||
|
a1 = arg(e, 1); \
|
||||||
|
a2 = arg(e, 2); \
|
||||||
|
return true; \
|
||||||
|
} else { \
|
||||||
|
return false; \
|
||||||
|
} \
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
|
@ -1560,6 +1560,8 @@ static void open_metavar_env(lua_State * L) {
|
||||||
SET_GLOBAL_FUN(instantiate_metavars, "instantiate_metavars");
|
SET_GLOBAL_FUN(instantiate_metavars, "instantiate_metavars");
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
void open_kernel_module(lua_State * L) {
|
void open_kernel_module(lua_State * L) {
|
||||||
open_level(L);
|
open_level(L);
|
||||||
open_local_context(L);
|
open_local_context(L);
|
||||||
|
|
|
@ -16,23 +16,8 @@ Author: Leonardo de Moura
|
||||||
#include "library/tactic/tactic.h"
|
#include "library/tactic/tactic.h"
|
||||||
|
|
||||||
namespace lean {
|
namespace lean {
|
||||||
bool is_app_of(expr const & e, expr const & f) {
|
|
||||||
return is_app(e) && arg(e, 0) == f;
|
|
||||||
}
|
|
||||||
|
|
||||||
bool is_app_of(expr const & e, expr const & f, expr & arg1, expr & arg2) {
|
|
||||||
if (is_app_of(e, f)) {
|
|
||||||
arg1 = arg(e, 1);
|
|
||||||
arg2 = arg(e, 2);
|
|
||||||
return true;
|
|
||||||
} else {
|
|
||||||
return false;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
tactic conj_tactic(bool all) {
|
tactic conj_tactic(bool all) {
|
||||||
return mk_tactic01([=](environment const &, io_state const &, proof_state const & s) -> optional<proof_state> {
|
return mk_tactic01([=](environment const &, io_state const &, proof_state const & s) -> optional<proof_state> {
|
||||||
expr andfn = mk_and_fn();
|
|
||||||
bool found = false;
|
bool found = false;
|
||||||
buffer<std::pair<name, goal>> new_goals_buf;
|
buffer<std::pair<name, goal>> new_goals_buf;
|
||||||
list<std::pair<name, expr>> proof_info;
|
list<std::pair<name, expr>> proof_info;
|
||||||
|
@ -41,7 +26,7 @@ tactic conj_tactic(bool all) {
|
||||||
goal const & g = p.second;
|
goal const & g = p.second;
|
||||||
expr const & c = g.get_conclusion();
|
expr const & c = g.get_conclusion();
|
||||||
expr c1, c2;
|
expr c1, c2;
|
||||||
if ((all || !found) && is_app_of(c, andfn, c1, c2)) {
|
if ((all || !found) && is_and(c, c1, c2)) {
|
||||||
found = true;
|
found = true;
|
||||||
name const & n = p.first;
|
name const & n = p.first;
|
||||||
proof_info.emplace_front(n, c);
|
proof_info.emplace_front(n, c);
|
||||||
|
@ -80,7 +65,7 @@ tactic imp_tactic(name const & H_name, bool all) {
|
||||||
goals new_goals = map_goals(s, [&](name const & g_name, goal const & g) -> goal {
|
goals new_goals = map_goals(s, [&](name const & g_name, goal const & g) -> goal {
|
||||||
expr const & c = g.get_conclusion();
|
expr const & c = g.get_conclusion();
|
||||||
expr new_h, new_c;
|
expr new_h, new_c;
|
||||||
if ((all || !found) && is_app_of(c, impfn, new_h, new_c)) {
|
if ((all || !found) && is_implies(c, new_h, new_c)) {
|
||||||
found = true;
|
found = true;
|
||||||
name new_h_name = g.mk_unique_hypothesis_name(H_name);
|
name new_h_name = g.mk_unique_hypothesis_name(H_name);
|
||||||
proof_info.emplace_front(g_name, new_h_name, c);
|
proof_info.emplace_front(g_name, new_h_name, c);
|
||||||
|
@ -113,7 +98,6 @@ tactic imp_tactic(name const & H_name, bool all) {
|
||||||
|
|
||||||
tactic conj_hyp_tactic(bool all) {
|
tactic conj_hyp_tactic(bool all) {
|
||||||
return mk_tactic01([=](environment const &, io_state const &, proof_state const & s) -> optional<proof_state> {
|
return mk_tactic01([=](environment const &, io_state const &, proof_state const & s) -> optional<proof_state> {
|
||||||
expr andfn = mk_and_fn();
|
|
||||||
bool found = false;
|
bool found = false;
|
||||||
list<std::pair<name, hypotheses>> proof_info; // goal name -> expanded hypotheses
|
list<std::pair<name, hypotheses>> proof_info; // goal name -> expanded hypotheses
|
||||||
goals new_goals = map_goals(s, [&](name const & ng, goal const & g) -> goal {
|
goals new_goals = map_goals(s, [&](name const & ng, goal const & g) -> goal {
|
||||||
|
@ -124,7 +108,7 @@ tactic conj_hyp_tactic(bool all) {
|
||||||
name const & H_name = p.first;
|
name const & H_name = p.first;
|
||||||
expr const & H_prop = p.second;
|
expr const & H_prop = p.second;
|
||||||
expr H1, H2;
|
expr H1, H2;
|
||||||
if ((all || !found) && is_app_of(H_prop, andfn, H1, H2)) {
|
if ((all || !found) && is_and(H_prop, H1, H2)) {
|
||||||
found = true;
|
found = true;
|
||||||
proof_info_data = add_hypothesis(p, proof_info_data);
|
proof_info_data = add_hypothesis(p, proof_info_data);
|
||||||
new_hyp_buf.emplace_back(name(H_name, 1), H1);
|
new_hyp_buf.emplace_back(name(H_name, 1), H1);
|
||||||
|
|
Loading…
Reference in a new issue