fix(library/data/int/basic): remove sorry's
This commit is contained in:
parent
843e95ade6
commit
a9f5735bb5
1 changed files with 12 additions and 4 deletions
|
@ -281,8 +281,18 @@ definition padd (p q : ℕ × ℕ) : ℕ × ℕ := (pr1 p + pr1 q, pr2 p + pr2 q
|
||||||
|
|
||||||
theorem repr_add : Π (a b : ℤ), repr (add a b) ≡ padd (repr a) (repr b)
|
theorem repr_add : Π (a b : ℤ), repr (add a b) ≡ padd (repr a) (repr b)
|
||||||
| (of_nat m) (of_nat n) := !equiv.refl
|
| (of_nat m) (of_nat n) := !equiv.refl
|
||||||
| (of_nat m) -[1+ n] := sorry -- begin end -- (!zero_add ▸ rfl)⁻¹ ▸ !repr_sub_nat_nat
|
| (of_nat m) -[1+ n] :=
|
||||||
| -[1+ m] (of_nat n) := sorry -- begin end -- (!zero_add ▸ rfl)⁻¹ ▸ !repr_sub_nat_nat
|
begin
|
||||||
|
change repr (sub_nat_nat m (succ n)) ≡ (m + 0, 0 + succ n),
|
||||||
|
rewrite [zero_add, add_zero],
|
||||||
|
apply repr_sub_nat_nat
|
||||||
|
end
|
||||||
|
| -[1+ m] (of_nat n) :=
|
||||||
|
begin
|
||||||
|
change repr (-[1+ m] + n) ≡ (0 + n, succ m + 0),
|
||||||
|
rewrite [zero_add, add_zero],
|
||||||
|
apply repr_sub_nat_nat
|
||||||
|
end
|
||||||
| -[1+ m] -[1+ n] := !repr_sub_nat_nat
|
| -[1+ m] -[1+ n] := !repr_sub_nat_nat
|
||||||
|
|
||||||
theorem padd_congr {p p' q q' : ℕ × ℕ} (Ha : p ≡ p') (Hb : q ≡ q') : padd p q ≡ padd p' q' :=
|
theorem padd_congr {p p' q q' : ℕ × ℕ} (Ha : p ≡ p') (Hb : q ≡ q') : padd p q ≡ padd p' q' :=
|
||||||
|
@ -528,8 +538,6 @@ has_sub.mk has_sub.sub
|
||||||
definition int_has_dvd [reducible] [instance] [priority int.prio] : has_dvd int :=
|
definition int_has_dvd [reducible] [instance] [priority int.prio] : has_dvd int :=
|
||||||
has_dvd.mk has_dvd.dvd
|
has_dvd.mk has_dvd.dvd
|
||||||
|
|
||||||
set_option pp.coercions true
|
|
||||||
|
|
||||||
/- additional properties -/
|
/- additional properties -/
|
||||||
theorem of_nat_sub {m n : ℕ} (H : m ≥ n) : of_nat (m - n) = of_nat m - of_nat n :=
|
theorem of_nat_sub {m n : ℕ} (H : m ≥ n) : of_nat (m - n) = of_nat m - of_nat n :=
|
||||||
assert m - n + n = m, from nat.sub_add_cancel H,
|
assert m - n + n = m, from nat.sub_add_cancel H,
|
||||||
|
|
Loading…
Reference in a new issue