feat(hott/homotopy/EM): redefine Eilenberg-Maclane spaces and prove their uniqueness
This commit is contained in:
parent
4ed4fb7c67
commit
a9fc853985
1 changed files with 329 additions and 165 deletions
|
@ -7,20 +7,20 @@ Authors: Floris van Doorn
|
||||||
Eilenberg MacLane spaces
|
Eilenberg MacLane spaces
|
||||||
-/
|
-/
|
||||||
|
|
||||||
import hit.groupoid_quotient .hopf .freudenthal .homotopy_group
|
import hit.groupoid_quotient homotopy.hopf homotopy.freudenthal homotopy.homotopy_group
|
||||||
open algebra pointed nat eq category group algebra is_trunc iso pointed unit trunc equiv is_conn
|
open algebra pointed nat eq category group is_trunc iso unit trunc equiv is_conn function is_equiv
|
||||||
function is_equiv
|
trunc_index
|
||||||
|
|
||||||
namespace EM
|
namespace EM
|
||||||
open groupoid_quotient
|
open groupoid_quotient
|
||||||
|
|
||||||
variables {G : Group}
|
variables {G : Group}
|
||||||
definition EM1 (G : Group) : Type :=
|
definition EM1' (G : Group) : Type :=
|
||||||
groupoid_quotient (Groupoid_of_Group G)
|
groupoid_quotient (Groupoid_of_Group G)
|
||||||
definition pEM1 [constructor] (G : Group) : Type* :=
|
definition EM1 [constructor] (G : Group) : Type* :=
|
||||||
pointed.MK (EM1 G) (elt star)
|
pointed.MK (EM1' G) (elt star)
|
||||||
|
|
||||||
definition base : EM1 G := elt star
|
definition base : EM1' G := elt star
|
||||||
definition pth : G → base = base := pth
|
definition pth : G → base = base := pth
|
||||||
definition resp_mul (g h : G) : pth (g * h) = pth g ⬝ pth h := resp_comp h g
|
definition resp_mul (g h : G) : pth (g * h) = pth g ⬝ pth h := resp_comp h g
|
||||||
definition resp_one : pth (1 : G) = idp :=
|
definition resp_one : pth (1 : G) = idp :=
|
||||||
|
@ -29,10 +29,11 @@ namespace EM
|
||||||
definition resp_inv (g : G) : pth (g⁻¹) = (pth g)⁻¹ :=
|
definition resp_inv (g : G) : pth (g⁻¹) = (pth g)⁻¹ :=
|
||||||
resp_inv g
|
resp_inv g
|
||||||
|
|
||||||
local attribute pointed.MK pointed.carrier pEM1 EM1 [reducible]
|
local attribute pointed.MK pointed.carrier EM1 EM1' [reducible]
|
||||||
protected definition rec {P : EM1 G → Type} [H : Π(x : EM1 G), is_trunc 1 (P x)]
|
protected definition rec {P : EM1' G → Type} [H : Π(x : EM1' G), is_trunc 1 (P x)]
|
||||||
(Pb : P base) (Pp : Π(g : G), Pb =[pth g] Pb)
|
(Pb : P base) (Pp : Π(g : G), Pb =[pth g] Pb)
|
||||||
(Pmul : Π(g h : G), change_path (resp_mul g h) (Pp (g * h)) = Pp g ⬝o Pp h) (x : EM1 G) : P x :=
|
(Pmul : Π(g h : G), change_path (resp_mul g h) (Pp (g * h)) = Pp g ⬝o Pp h) (x : EM1' G) :
|
||||||
|
P x :=
|
||||||
begin
|
begin
|
||||||
induction x,
|
induction x,
|
||||||
{ induction g, exact Pb},
|
{ induction g, exact Pb},
|
||||||
|
@ -40,27 +41,27 @@ namespace EM
|
||||||
{ induction a, induction b, induction c, exact Pmul f g}
|
{ induction a, induction b, induction c, exact Pmul f g}
|
||||||
end
|
end
|
||||||
|
|
||||||
protected definition rec_on {P : EM1 G → Type} [H : Π(x : EM1 G), is_trunc 1 (P x)]
|
protected definition rec_on {P : EM1' G → Type} [H : Π(x : EM1' G), is_trunc 1 (P x)]
|
||||||
(x : EM1 G) (Pb : P base) (Pp : Π(g : G), Pb =[pth g] Pb)
|
(x : EM1' G) (Pb : P base) (Pp : Π(g : G), Pb =[pth g] Pb)
|
||||||
(Pmul : Π(g h : G), change_path (resp_mul g h) (Pp (g * h)) = Pp g ⬝o Pp h) : P x :=
|
(Pmul : Π(g h : G), change_path (resp_mul g h) (Pp (g * h)) = Pp g ⬝o Pp h) : P x :=
|
||||||
EM.rec Pb Pp Pmul x
|
EM.rec Pb Pp Pmul x
|
||||||
|
|
||||||
protected definition set_rec {P : EM1 G → Type} [H : Π(x : EM1 G), is_set (P x)]
|
protected definition set_rec {P : EM1' G → Type} [H : Π(x : EM1' G), is_set (P x)]
|
||||||
(Pb : P base) (Pp : Π(g : G), Pb =[pth g] Pb) (x : EM1 G) : P x :=
|
(Pb : P base) (Pp : Π(g : G), Pb =[pth g] Pb) (x : EM1' G) : P x :=
|
||||||
EM.rec Pb Pp !center x
|
EM.rec Pb Pp !center x
|
||||||
|
|
||||||
protected definition prop_rec {P : EM1 G → Type} [H : Π(x : EM1 G), is_prop (P x)]
|
protected definition prop_rec {P : EM1' G → Type} [H : Π(x : EM1' G), is_prop (P x)]
|
||||||
(Pb : P base) (x : EM1 G) : P x :=
|
(Pb : P base) (x : EM1' G) : P x :=
|
||||||
EM.rec Pb !center !center x
|
EM.rec Pb !center !center x
|
||||||
|
|
||||||
definition rec_pth {P : EM1 G → Type} [H : Π(x : EM1 G), is_trunc 1 (P x)]
|
definition rec_pth {P : EM1' G → Type} [H : Π(x : EM1' G), is_trunc 1 (P x)]
|
||||||
{Pb : P base} {Pp : Π(g : G), Pb =[pth g] Pb}
|
{Pb : P base} {Pp : Π(g : G), Pb =[pth g] Pb}
|
||||||
(Pmul : Π(g h : G), change_path (resp_mul g h) (Pp (g * h)) = Pp g ⬝o Pp h)
|
(Pmul : Π(g h : G), change_path (resp_mul g h) (Pp (g * h)) = Pp g ⬝o Pp h)
|
||||||
(g : G) : apd (EM.rec Pb Pp Pmul) (pth g) = Pp g :=
|
(g : G) : apd (EM.rec Pb Pp Pmul) (pth g) = Pp g :=
|
||||||
proof !rec_pth qed
|
proof !rec_pth qed
|
||||||
|
|
||||||
protected definition elim {P : Type} [is_trunc 1 P] (Pb : P) (Pp : Π(g : G), Pb = Pb)
|
protected definition elim {P : Type} [is_trunc 1 P] (Pb : P) (Pp : Π(g : G), Pb = Pb)
|
||||||
(Pmul : Π(g h : G), Pp (g * h) = Pp g ⬝ Pp h) (x : EM1 G) : P :=
|
(Pmul : Π(g h : G), Pp (g * h) = Pp g ⬝ Pp h) (x : EM1' G) : P :=
|
||||||
begin
|
begin
|
||||||
induction x,
|
induction x,
|
||||||
{ exact Pb},
|
{ exact Pb},
|
||||||
|
@ -68,15 +69,15 @@ namespace EM
|
||||||
{ exact Pmul f g}
|
{ exact Pmul f g}
|
||||||
end
|
end
|
||||||
|
|
||||||
protected definition elim_on [reducible] {P : Type} [is_trunc 1 P] (x : EM1 G)
|
protected definition elim_on [reducible] {P : Type} [is_trunc 1 P] (x : EM1' G)
|
||||||
(Pb : P) (Pp : G → Pb = Pb) (Pmul : Π(g h : G), Pp (g * h) = Pp g ⬝ Pp h) : P :=
|
(Pb : P) (Pp : G → Pb = Pb) (Pmul : Π(g h : G), Pp (g * h) = Pp g ⬝ Pp h) : P :=
|
||||||
EM.elim Pb Pp Pmul x
|
EM.elim Pb Pp Pmul x
|
||||||
|
|
||||||
protected definition set_elim [reducible] {P : Type} [is_set P] (Pb : P) (Pp : G → Pb = Pb)
|
protected definition set_elim [reducible] {P : Type} [is_set P] (Pb : P) (Pp : G → Pb = Pb)
|
||||||
(x : EM1 G) : P :=
|
(x : EM1' G) : P :=
|
||||||
EM.elim Pb Pp !center x
|
EM.elim Pb Pp !center x
|
||||||
|
|
||||||
protected definition prop_elim [reducible] {P : Type} [is_prop P] (Pb : P) (x : EM1 G) : P :=
|
protected definition prop_elim [reducible] {P : Type} [is_prop P] (Pb : P) (x : EM1' G) : P :=
|
||||||
EM.elim Pb !center !center x
|
EM.elim Pb !center !center x
|
||||||
|
|
||||||
definition elim_pth {P : Type} [is_trunc 1 P] {Pb : P} {Pp : G → Pb = Pb}
|
definition elim_pth {P : Type} [is_trunc 1 P] {Pb : P} {Pp : G → Pb = Pb}
|
||||||
|
@ -84,7 +85,7 @@ namespace EM
|
||||||
proof !elim_pth qed
|
proof !elim_pth qed
|
||||||
|
|
||||||
protected definition elim_set.{u} (Pb : Set.{u}) (Pp : Π(g : G), Pb ≃ Pb)
|
protected definition elim_set.{u} (Pb : Set.{u}) (Pp : Π(g : G), Pb ≃ Pb)
|
||||||
(Pmul : Π(g h : G) (x : Pb), Pp (g * h) x = Pp h (Pp g x)) (x : EM1 G) : Set.{u} :=
|
(Pmul : Π(g h : G) (x : Pb), Pp (g * h) x = Pp h (Pp g x)) (x : EM1' G) : Set.{u} :=
|
||||||
groupoid_quotient.elim_set (λu, Pb) (λu v, Pp) (λu v w g h, proof Pmul h g qed) x
|
groupoid_quotient.elim_set (λu, Pb) (λu v, Pp) (λu v w g h, proof Pmul h g qed) x
|
||||||
|
|
||||||
theorem elim_set_pth {Pb : Set} {Pp : Π(g : G), Pb ≃ Pb}
|
theorem elim_set_pth {Pb : Set} {Pp : Π(g : G), Pb ≃ Pb}
|
||||||
|
@ -104,10 +105,10 @@ namespace EM
|
||||||
open groupoid_quotient
|
open groupoid_quotient
|
||||||
|
|
||||||
variables (G : Group)
|
variables (G : Group)
|
||||||
definition base_eq_base_equiv [constructor] : (base = base :> pEM1 G) ≃ G :=
|
definition base_eq_base_equiv : (base = base :> EM1 G) ≃ G :=
|
||||||
!elt_eq_elt_equiv
|
!elt_eq_elt_equiv
|
||||||
|
|
||||||
definition fundamental_group_pEM1 : π₁ (pEM1 G) ≃g G :=
|
definition fundamental_group_EM1 : π₁ (EM1 G) ≃g G :=
|
||||||
begin
|
begin
|
||||||
fapply isomorphism_of_equiv,
|
fapply isomorphism_of_equiv,
|
||||||
{ exact trunc_equiv_trunc 0 !base_eq_base_equiv ⬝e trunc_equiv 0 G},
|
{ exact trunc_equiv_trunc 0 !base_eq_base_equiv ⬝e trunc_equiv 0 G},
|
||||||
|
@ -115,36 +116,85 @@ namespace EM
|
||||||
exact encode_con p q}
|
exact encode_con p q}
|
||||||
end
|
end
|
||||||
|
|
||||||
proposition is_trunc_pEM1 [instance] : is_trunc 1 (pEM1 G) :=
|
|
||||||
!is_trunc_groupoid_quotient
|
|
||||||
|
|
||||||
proposition is_trunc_EM1 [instance] : is_trunc 1 (EM1 G) :=
|
proposition is_trunc_EM1 [instance] : is_trunc 1 (EM1 G) :=
|
||||||
!is_trunc_groupoid_quotient
|
!is_trunc_groupoid_quotient
|
||||||
|
|
||||||
proposition is_conn_EM1 [instance] : is_conn 0 (EM1 G) :=
|
proposition is_trunc_EM1' [instance] : is_trunc 1 (EM1' G) :=
|
||||||
|
!is_trunc_groupoid_quotient
|
||||||
|
|
||||||
|
proposition is_conn_EM1' [instance] : is_conn 0 (EM1' G) :=
|
||||||
by apply @is_conn_groupoid_quotient; esimp; exact _
|
by apply @is_conn_groupoid_quotient; esimp; exact _
|
||||||
|
|
||||||
proposition is_conn_pEM1 [instance] : is_conn 0 (pEM1 G) :=
|
proposition is_conn_EM1 [instance] : is_conn 0 (EM1 G) :=
|
||||||
is_conn_EM1 G
|
is_conn_EM1' G
|
||||||
variable {G}
|
|
||||||
|
|
||||||
definition EM1_map [unfold 7] {X : Type*} (e : Ω X ≃ G)
|
variable {G}
|
||||||
(r : Πp q, e (p ⬝ q) = e p * e q) [is_conn 0 X] [is_trunc 1 X] : EM1 G → X :=
|
definition EM1_map [unfold 7] {X : Type*} (e : G → Ω X)
|
||||||
|
(r : Πg h, e (g * h) = e g ⬝ e h) [is_conn 0 X] [is_trunc 1 X] : EM1 G → X :=
|
||||||
begin
|
begin
|
||||||
intro x, induction x using EM.elim,
|
intro x, induction x using EM.elim,
|
||||||
{ exact Point X},
|
{ exact Point X },
|
||||||
{ exact e⁻¹ᵉ g},
|
{ exact e g },
|
||||||
{ exact inv_preserve_binary e concat mul r g h}
|
{ exact r g h }
|
||||||
end
|
end
|
||||||
|
|
||||||
|
/- Uniqueness of K(G, 1) -/
|
||||||
|
|
||||||
|
definition EM1_pmap [constructor] {X : Type*} (e : G → Ω X)
|
||||||
|
(r : Πg h, e (g * h) = e g ⬝ e h) [is_conn 0 X] [is_trunc 1 X] : EM1 G →* X :=
|
||||||
|
pmap.mk (EM1_map e r) idp
|
||||||
|
|
||||||
|
variable (G)
|
||||||
|
definition loop_EM1 [constructor] : G ≃* Ω (EM1 G) :=
|
||||||
|
(pequiv_of_equiv (base_eq_base_equiv G) idp)⁻¹ᵉ*
|
||||||
|
|
||||||
|
variable {G}
|
||||||
|
definition loop_EM1_pmap {X : Type*} (e : G →* Ω X)
|
||||||
|
(r : Πg h, e (g * h) = e g ⬝ e h) [is_conn 0 X] [is_trunc 1 X] :
|
||||||
|
Ω→(EM1_pmap e r) ∘* loop_EM1 G ~* e :=
|
||||||
|
begin
|
||||||
|
fapply phomotopy.mk,
|
||||||
|
{ intro g, refine !idp_con ⬝ elim_pth r g },
|
||||||
|
{ apply is_set.elim }
|
||||||
|
end
|
||||||
|
|
||||||
|
definition EM1_pequiv'.{u} {G : Group.{u}} {X : pType.{u}} (e : G ≃* Ω X)
|
||||||
|
(r : Πg h, e (g * h) = e g ⬝ e h) [is_conn 0 X] [is_trunc 1 X] : EM1 G ≃* X :=
|
||||||
|
begin
|
||||||
|
apply pequiv_of_pmap (EM1_pmap e r),
|
||||||
|
apply whitehead_principle_pointed 1,
|
||||||
|
intro k, cases k with k,
|
||||||
|
{ apply @is_equiv_of_is_contr,
|
||||||
|
all_goals (esimp; exact _)},
|
||||||
|
{ cases k with k,
|
||||||
|
{ apply is_equiv_trunc_functor, esimp,
|
||||||
|
apply is_equiv.homotopy_closed, rotate 1,
|
||||||
|
{ symmetry, exact phomotopy_pinv_right_of_phomotopy (loop_EM1_pmap _ _) },
|
||||||
|
apply is_equiv_compose e },
|
||||||
|
{ apply @is_equiv_of_is_contr,
|
||||||
|
do 2 exact trivial_homotopy_group_of_is_trunc _ (succ_lt_succ !zero_lt_succ)}}
|
||||||
|
end
|
||||||
|
|
||||||
|
definition EM1_pequiv.{u} {G : Group.{u}} {X : pType.{u}} (e : G ≃g π₁ X)
|
||||||
|
[is_conn 0 X] [is_trunc 1 X] : EM1 G ≃* X :=
|
||||||
|
begin
|
||||||
|
apply EM1_pequiv' (pequiv_of_isomorphism e ⬝e* ptrunc_pequiv 0 (Ω X)),
|
||||||
|
refine is_equiv.preserve_binary_of_inv_preserve _ mul concat _,
|
||||||
|
intro p q,
|
||||||
|
exact to_respect_mul e⁻¹ᵍ (tr p) (tr q)
|
||||||
|
end
|
||||||
|
|
||||||
|
definition EM1_pequiv_type (X : Type*) [is_conn 0 X] [is_trunc 1 X] : EM1 (π₁ X) ≃* X :=
|
||||||
|
EM1_pequiv !isomorphism.refl
|
||||||
|
|
||||||
end EM
|
end EM
|
||||||
|
|
||||||
open hopf susp
|
open hopf susp
|
||||||
namespace EM
|
namespace EM
|
||||||
-- The K(G,n+1):
|
/- EM1 G is an h-space if G is an abelian group. This allows us to construct K(G,n) for n ≥ 2 -/
|
||||||
variables {G : CommGroup} (n : ℕ)
|
variables {G : CommGroup} (n : ℕ)
|
||||||
|
|
||||||
definition EM1_mul [unfold 2 3] (x x' : EM1 G) : EM1 G :=
|
definition EM1_mul [unfold 2 3] (x x' : EM1' G) : EM1' G :=
|
||||||
begin
|
begin
|
||||||
induction x,
|
induction x,
|
||||||
{ exact x'},
|
{ exact x'},
|
||||||
|
@ -153,18 +203,18 @@ namespace EM
|
||||||
{ exact abstract begin apply loop_pathover, apply square_of_eq,
|
{ exact abstract begin apply loop_pathover, apply square_of_eq,
|
||||||
refine !resp_mul⁻¹ ⬝ _ ⬝ !resp_mul,
|
refine !resp_mul⁻¹ ⬝ _ ⬝ !resp_mul,
|
||||||
exact ap pth !mul.comm end end}},
|
exact ap pth !mul.comm end end}},
|
||||||
{ refine EM.prop_rec _ x', apply resp_mul}
|
{ refine EM.prop_rec _ x', apply resp_mul }
|
||||||
end
|
end
|
||||||
|
|
||||||
variable (G)
|
variable (G)
|
||||||
definition EM1_mul_one (x : EM1 G) : EM1_mul x base = x :=
|
definition EM1_mul_one (x : EM1' G) : EM1_mul x base = x :=
|
||||||
begin
|
begin
|
||||||
induction x using EM.set_rec,
|
induction x using EM.set_rec,
|
||||||
{ reflexivity},
|
{ reflexivity},
|
||||||
{ apply eq_pathover_id_right, apply hdeg_square, refine EM.elim_pth _ g}
|
{ apply eq_pathover_id_right, apply hdeg_square, refine EM.elim_pth _ g}
|
||||||
end
|
end
|
||||||
|
|
||||||
definition h_space_EM1 [constructor] [instance] : h_space (pEM1 G) :=
|
definition h_space_EM1 [constructor] [instance] : h_space (EM1' G) :=
|
||||||
begin
|
begin
|
||||||
fapply h_space.mk,
|
fapply h_space.mk,
|
||||||
{ exact EM1_mul},
|
{ exact EM1_mul},
|
||||||
|
@ -174,45 +224,173 @@ namespace EM
|
||||||
end
|
end
|
||||||
|
|
||||||
/- K(G, n+1) -/
|
/- K(G, n+1) -/
|
||||||
definition EMadd1 (n : ℕ) : Type* :=
|
definition EMadd1 : ℕ → Type*
|
||||||
ptrunc (n+1) (iterate_psusp n (pEM1 G))
|
| 0 := EM1 G
|
||||||
|
| (n+1) := ptrunc (n+2) (psusp (EMadd1 n))
|
||||||
|
|
||||||
definition loop_EM2 : Ω[1] (EMadd1 G 1) ≃* pEM1 G :=
|
definition EMadd1_succ [unfold_full] (n : ℕ) :
|
||||||
|
EMadd1 G (succ n) = ptrunc (n.+2) (psusp (EMadd1 G n)) :=
|
||||||
|
idp
|
||||||
|
|
||||||
|
definition loop_EM2 : Ω[1] (EMadd1 G 1) ≃* EM1 G :=
|
||||||
|
hopf.delooping (EM1' G) idp
|
||||||
|
|
||||||
|
definition is_conn_EMadd1 [instance] (n : ℕ) : is_conn n (EMadd1 G n) :=
|
||||||
begin
|
begin
|
||||||
apply hopf.delooping, reflexivity
|
induction n with n IH,
|
||||||
|
{ apply is_conn_EM1 },
|
||||||
|
{ rewrite EMadd1_succ, esimp, exact _ }
|
||||||
end
|
end
|
||||||
|
|
||||||
definition homotopy_group_EM2 : πg[1+1] (EMadd1 G 1) ≃g G :=
|
definition is_trunc_EMadd1 [instance] (n : ℕ) : is_trunc (n+1) (EMadd1 G n) :=
|
||||||
begin
|
|
||||||
refine ghomotopy_group_succ_in _ 0 ⬝g _,
|
|
||||||
refine homotopy_group_isomorphism_of_pequiv 0 (loop_EM2 G) ⬝g _,
|
|
||||||
apply fundamental_group_pEM1
|
|
||||||
end
|
|
||||||
|
|
||||||
definition homotopy_group_EMadd1 (n : ℕ) : πg[n+1] (EMadd1 G n) ≃g G :=
|
|
||||||
begin
|
begin
|
||||||
cases n with n,
|
cases n with n,
|
||||||
{ refine homotopy_group_isomorphism_of_pequiv 0 _ ⬝g fundamental_group_pEM1 G,
|
{ apply is_trunc_EM1 },
|
||||||
apply ptrunc_pequiv, apply is_trunc_pEM1},
|
{ apply is_trunc_trunc }
|
||||||
induction n with n IH,
|
|
||||||
{ apply homotopy_group_EM2 G},
|
|
||||||
refine _ ⬝g IH,
|
|
||||||
refine !ghomotopy_group_ptrunc ⬝g _ ⬝g !ghomotopy_group_ptrunc⁻¹ᵍ,
|
|
||||||
apply iterate_psusp_stability_isomorphism,
|
|
||||||
rexact add_mul_le_mul_add n 1 1
|
|
||||||
end
|
end
|
||||||
|
|
||||||
section
|
/- loops of an EM-space -/
|
||||||
local attribute EMadd1 [reducible]
|
definition loop_EMadd1 (n : ℕ) : EMadd1 G n ≃* Ω (EMadd1 G (succ n)) :=
|
||||||
definition is_conn_EMadd1 [instance] (n : ℕ) : is_conn n (EMadd1 G n) := _
|
begin
|
||||||
|
cases n with n,
|
||||||
definition is_trunc_EMadd1 [instance] (n : ℕ) : is_trunc (n+1) (EMadd1 G n) :=
|
{ exact !loop_EM2⁻¹ᵉ* },
|
||||||
_
|
{ rewrite [EMadd1_succ G (succ n)],
|
||||||
|
refine (ptrunc_pequiv (succ n + 1) _)⁻¹ᵉ* ⬝e* _ ⬝e* (loop_ptrunc_pequiv _ _)⁻¹ᵉ*,
|
||||||
|
have succ n + 1 ≤ 2 * succ n, from add_mul_le_mul_add n 1 1,
|
||||||
|
refine freudenthal_pequiv _ this }
|
||||||
end
|
end
|
||||||
|
|
||||||
|
definition loopn_EMadd1_pequiv_EM1 (G : CommGroup) (n : ℕ) : EM1 G ≃* Ω[n] (EMadd1 G n) :=
|
||||||
|
begin
|
||||||
|
induction n with n e,
|
||||||
|
{ reflexivity },
|
||||||
|
{ refine _ ⬝e* !loopn_succ_in⁻¹ᵉ*,
|
||||||
|
refine _ ⬝e* loopn_pequiv_loopn n !loop_EMadd1,
|
||||||
|
exact e }
|
||||||
|
end
|
||||||
|
|
||||||
|
-- use loopn_EMadd1_pequiv_EM1 in this definition?
|
||||||
|
definition loopn_EMadd1 (G : CommGroup) (n : ℕ) : G ≃* Ω[succ n] (EMadd1 G n) :=
|
||||||
|
begin
|
||||||
|
induction n with n e,
|
||||||
|
{ apply loop_EM1 },
|
||||||
|
{ refine _ ⬝e* !loopn_succ_in⁻¹ᵉ*,
|
||||||
|
refine _ ⬝e* loopn_pequiv_loopn (succ n) !loop_EMadd1,
|
||||||
|
exact e }
|
||||||
|
end
|
||||||
|
|
||||||
|
definition loopn_EMadd1_succ [unfold_full] (G : CommGroup) (n : ℕ) : loopn_EMadd1 G (succ n) ~*
|
||||||
|
!loopn_succ_in⁻¹ᵉ* ∘* apn (succ n) !loop_EMadd1 ∘* loopn_EMadd1 G n :=
|
||||||
|
by reflexivity
|
||||||
|
|
||||||
|
definition EM_up {G : CommGroup} {X : Type*} {n : ℕ} (e : Ω[succ (succ n)] X ≃* G)
|
||||||
|
: Ω[succ n] (Ω X) ≃* G :=
|
||||||
|
!loopn_succ_in⁻¹ᵉ* ⬝e* e
|
||||||
|
|
||||||
|
definition is_homomorphism_EM_up {G : CommGroup} {X : Type*} {n : ℕ}
|
||||||
|
(e : Ω[succ (succ n)] X ≃* G)
|
||||||
|
(r : Π(p q : Ω[succ (succ n)] X), e (p ⬝ q) = e p * e q)
|
||||||
|
(p q : Ω[succ n] (Ω X)) : EM_up e (p ⬝ q) = EM_up e p * EM_up e q :=
|
||||||
|
begin
|
||||||
|
refine _ ⬝ !r, apply ap e, esimp, apply apn_con
|
||||||
|
end
|
||||||
|
|
||||||
|
definition EMadd1_pmap [unfold 8] {G : CommGroup} {X : Type*} (n : ℕ)
|
||||||
|
(e : Ω[succ n] X ≃* G)
|
||||||
|
(r : Πp q, e (p ⬝ q) = e p * e q)
|
||||||
|
[H1 : is_conn n X] [H2 : is_trunc (n.+1) X] : EMadd1 G n →* X :=
|
||||||
|
begin
|
||||||
|
revert X e r H1 H2, induction n with n f: intro X e r H1 H2,
|
||||||
|
{ exact EM1_pmap e⁻¹ᵉ* (equiv.inv_preserve_binary e concat mul r) },
|
||||||
|
rewrite [EMadd1_succ],
|
||||||
|
exact ptrunc.elim ((succ n).+1)
|
||||||
|
(psusp.elim (f _ (EM_up e) (is_homomorphism_EM_up e r) _ _)),
|
||||||
|
end
|
||||||
|
|
||||||
|
definition EMadd1_pmap_succ {G : CommGroup} {X : Type*} (n : ℕ) (e : Ω[succ (succ n)] X ≃* G)
|
||||||
|
r [H1 : is_conn (succ n) X] [H2 : is_trunc ((succ n).+1) X] : EMadd1_pmap (succ n) e r =
|
||||||
|
ptrunc.elim ((succ n).+1) (psusp.elim (EMadd1_pmap n (EM_up e) (is_homomorphism_EM_up e r))) :=
|
||||||
|
by reflexivity
|
||||||
|
|
||||||
|
definition loop_EMadd1_pmap {G : CommGroup} {X : Type*} {n : ℕ} (e : Ω[succ (succ n)] X ≃* G)
|
||||||
|
(r : Πp q, e (p ⬝ q) = e p * e q)
|
||||||
|
[H1 : is_conn (succ n) X] [H2 : is_trunc ((succ n).+1) X] :
|
||||||
|
Ω→(EMadd1_pmap (succ n) e r) ∘* loop_EMadd1 G n ~*
|
||||||
|
EMadd1_pmap n (EM_up e) (is_homomorphism_EM_up e r) :=
|
||||||
|
begin
|
||||||
|
cases n with n,
|
||||||
|
{ apply hopf_delooping_elim },
|
||||||
|
{ refine !passoc⁻¹* ⬝* _,
|
||||||
|
rewrite [EMadd1_pmap_succ (succ n)],
|
||||||
|
refine pwhisker_right _ !ap1_ptrunc_elim ⬝* _,
|
||||||
|
refine !passoc⁻¹* ⬝* _,
|
||||||
|
refine pwhisker_right _ (ptrunc_elim_freudenthal_pequiv
|
||||||
|
(succ n) (succ (succ n)) (add_mul_le_mul_add n 1 1) _) ⬝* _,
|
||||||
|
reflexivity }
|
||||||
|
end
|
||||||
|
|
||||||
|
definition loopn_EMadd1_pmap' {G : CommGroup} {X : Type*} {n : ℕ} (e : Ω[succ n] X ≃* G)
|
||||||
|
(r : Πp q, e (p ⬝ q) = e p * e q)
|
||||||
|
[H1 : is_conn n X] [H2 : is_trunc (n.+1) X] :
|
||||||
|
Ω→[succ n](EMadd1_pmap n e r) ∘* loopn_EMadd1 G n ~* e⁻¹ᵉ* :=
|
||||||
|
begin
|
||||||
|
revert X e r H1 H2, induction n with n IH: intro X e r H1 H2,
|
||||||
|
{ apply loop_EM1_pmap },
|
||||||
|
refine pwhisker_left _ !loopn_EMadd1_succ ⬝* _,
|
||||||
|
refine !passoc⁻¹* ⬝* _,
|
||||||
|
refine pwhisker_right _ !loopn_succ_in_inv_natural ⬝* _,
|
||||||
|
refine !passoc ⬝* _,
|
||||||
|
refine pwhisker_left _ (!passoc⁻¹* ⬝*
|
||||||
|
pwhisker_right _ (!apn_pcompose⁻¹* ⬝* apn_phomotopy _ !loop_EMadd1_pmap) ⬝*
|
||||||
|
!IH ⬝* !pinv_trans_pinv_left) ⬝* _,
|
||||||
|
apply pinv_pcompose_cancel_left
|
||||||
|
end
|
||||||
|
|
||||||
|
definition EMadd1_pequiv' {G : CommGroup} {X : Type*} (n : ℕ) (e : Ω[succ n] X ≃* G)
|
||||||
|
(r : Π(p q : Ω[succ n] X), e (p ⬝ q) = e p * e q)
|
||||||
|
[H1 : is_conn n X] [H2 : is_trunc (n.+1) X] : EMadd1 G n ≃* X :=
|
||||||
|
begin
|
||||||
|
apply pequiv_of_pmap (EMadd1_pmap n e r),
|
||||||
|
have is_conn 0 (EMadd1 G n), from is_conn_of_le _ (zero_le_of_nat n),
|
||||||
|
have is_trunc (n.+1) (EMadd1 G n), from !is_trunc_EMadd1,
|
||||||
|
refine whitehead_principle_pointed (n.+1) _ _,
|
||||||
|
intro k, apply @nat.lt_by_cases k (succ n): intro H,
|
||||||
|
{ apply @is_equiv_of_is_contr,
|
||||||
|
do 2 exact trivial_homotopy_group_of_is_conn _ (le_of_lt_succ H)},
|
||||||
|
{ cases H, esimp, apply is_equiv_trunc_functor, esimp,
|
||||||
|
apply is_equiv.homotopy_closed, rotate 1,
|
||||||
|
{ symmetry, exact phomotopy_pinv_right_of_phomotopy (loopn_EMadd1_pmap' _ _) },
|
||||||
|
apply is_equiv_compose (e⁻¹ᵉ*)},
|
||||||
|
{ apply @is_equiv_of_is_contr,
|
||||||
|
do 2 exact trivial_homotopy_group_of_is_trunc _ H}
|
||||||
|
end
|
||||||
|
|
||||||
|
definition EMadd1_pequiv {G : CommGroup} {X : Type*} (n : ℕ) (e : πg[n+1] X ≃g G)
|
||||||
|
[H1 : is_conn n X] [H2 : is_trunc (n.+1) X] : EMadd1 G n ≃* X :=
|
||||||
|
begin
|
||||||
|
have is_set (Ω[succ n] X), from !is_set_loopn,
|
||||||
|
apply EMadd1_pequiv' n ((ptrunc_pequiv _ _)⁻¹ᵉ* ⬝e* pequiv_of_isomorphism e),
|
||||||
|
intro p q, esimp, exact to_respect_mul e (tr p) (tr q)
|
||||||
|
end
|
||||||
|
|
||||||
|
definition EMadd1_pequiv_succ {G : CommGroup} {X : Type*} (n : ℕ) (e : πag[n+2] X ≃g G)
|
||||||
|
[H1 : is_conn (n.+1) X] [H2 : is_trunc (n.+2) X] : EMadd1 G (succ n) ≃* X :=
|
||||||
|
EMadd1_pequiv (succ n) e
|
||||||
|
|
||||||
|
definition ghomotopy_group_EMadd1 (n : ℕ) : πg[n+1] (EMadd1 G n) ≃g G :=
|
||||||
|
begin
|
||||||
|
change π₁ (Ω[n] (EMadd1 G n)) ≃g G,
|
||||||
|
refine homotopy_group_isomorphism_of_pequiv 0 (loopn_EMadd1_pequiv_EM1 G n)⁻¹ᵉ* ⬝g _,
|
||||||
|
apply fundamental_group_EM1,
|
||||||
|
end
|
||||||
|
|
||||||
|
definition EMadd1_pequiv_type (X : Type*) (n : ℕ) [is_conn (n+1) X] [is_trunc (n+1+1) X]
|
||||||
|
: EMadd1 (πag[n+2] X) (succ n) ≃* X :=
|
||||||
|
EMadd1_pequiv_succ n !isomorphism.refl
|
||||||
|
|
||||||
/- K(G, n) -/
|
/- K(G, n) -/
|
||||||
definition EM (G : CommGroup) : ℕ → Type*
|
definition EM (G : CommGroup) : ℕ → Type*
|
||||||
| 0 := pType_of_Group G
|
| 0 := G
|
||||||
| (k+1) := EMadd1 G k
|
| (k+1) := EMadd1 G k
|
||||||
|
|
||||||
namespace ops
|
namespace ops
|
||||||
|
@ -220,15 +398,15 @@ namespace EM
|
||||||
end ops
|
end ops
|
||||||
open ops
|
open ops
|
||||||
|
|
||||||
definition homotopy_group_EM (n : ℕ) : π[n] (EM G n) ≃* pType_of_Group G :=
|
definition homotopy_group_EM (n : ℕ) : π[n] (EM G n) ≃* G :=
|
||||||
begin
|
begin
|
||||||
cases n with n,
|
cases n with n,
|
||||||
{ rexact ptrunc_pequiv 0 (pType_of_Group G) _},
|
{ rexact ptrunc_pequiv 0 (G) },
|
||||||
{ apply pequiv_of_isomorphism (homotopy_group_EMadd1 G n)}
|
{ exact pequiv_of_isomorphism (ghomotopy_group_EMadd1 G n)}
|
||||||
end
|
end
|
||||||
|
|
||||||
definition ghomotopy_group_EM (n : ℕ) : πg[n+1] (EM G (n+1)) ≃g G :=
|
definition ghomotopy_group_EM (n : ℕ) : πg[n+1] (EM G (n+1)) ≃g G :=
|
||||||
homotopy_group_EMadd1 G n
|
ghomotopy_group_EMadd1 G n
|
||||||
|
|
||||||
definition is_conn_EM [instance] (n : ℕ) : is_conn (n.-1) (EM G n) :=
|
definition is_conn_EM [instance] (n : ℕ) : is_conn (n.-1) (EM G n) :=
|
||||||
begin
|
begin
|
||||||
|
@ -247,102 +425,88 @@ namespace EM
|
||||||
{ apply is_trunc_EMadd1}
|
{ apply is_trunc_EMadd1}
|
||||||
end
|
end
|
||||||
|
|
||||||
/- Uniqueness of K(G, 1) -/
|
|
||||||
variable {H : Group}
|
|
||||||
definition pEM1_pmap [constructor] {X : Type*} (e : Ω X ≃ H)
|
|
||||||
(r : Πp q, e (p ⬝ q) = e p * e q) [is_conn 0 X] [is_trunc 1 X] : pEM1 H →* X :=
|
|
||||||
begin
|
|
||||||
apply pmap.mk (EM1_map e r),
|
|
||||||
reflexivity,
|
|
||||||
end
|
|
||||||
|
|
||||||
variable (H)
|
|
||||||
definition loop_pEM1 [constructor] : Ω (pEM1 H) ≃* pType_of_Group H :=
|
|
||||||
pequiv_of_equiv (base_eq_base_equiv H) idp
|
|
||||||
|
|
||||||
variable {H}
|
|
||||||
definition loop_pEM1_pmap {X : Type*} (e : Ω X ≃ H)
|
|
||||||
(r : Πp q, e (p ⬝ q) = e p * e q) [is_conn 0 X] [is_trunc 1 X] :
|
|
||||||
Ω→(pEM1_pmap e r) ~ e⁻¹ᵉ ∘ base_eq_base_equiv H :=
|
|
||||||
begin
|
|
||||||
apply homotopy_of_inv_homotopy_pre (base_eq_base_equiv H),
|
|
||||||
intro g, exact !idp_con ⬝ !elim_pth
|
|
||||||
end
|
|
||||||
|
|
||||||
open trunc_index
|
|
||||||
definition pEM1_pequiv'.{u} {G : Group.{u}} {X : pType.{u}} (e : Ω X ≃ G)
|
|
||||||
(r : Πp q, e (p ⬝ q) = e p * e q) [is_conn 0 X] [is_trunc 1 X] : pEM1 G ≃* X :=
|
|
||||||
begin
|
|
||||||
apply pequiv_of_pmap (pEM1_pmap e r),
|
|
||||||
apply whitehead_principle_pointed 1,
|
|
||||||
intro k, cases k with k,
|
|
||||||
{ apply @is_equiv_of_is_contr,
|
|
||||||
all_goals (esimp; exact _)},
|
|
||||||
{ cases k with k,
|
|
||||||
{ apply is_equiv_trunc_functor, esimp,
|
|
||||||
apply is_equiv.homotopy_closed, rotate 1,
|
|
||||||
{ symmetry, exact loop_pEM1_pmap _ _},
|
|
||||||
apply is_equiv_compose, apply to_is_equiv},
|
|
||||||
{ apply @is_equiv_of_is_contr,
|
|
||||||
do 2 exact trivial_homotopy_group_of_is_trunc _ (succ_lt_succ !zero_lt_succ)}}
|
|
||||||
end
|
|
||||||
|
|
||||||
definition pEM1_pequiv.{u} {G : Group.{u}} {X : pType.{u}} (e : π₁ X ≃g G)
|
|
||||||
[is_conn 0 X] [is_trunc 1 X] : pEM1 G ≃* X :=
|
|
||||||
begin
|
|
||||||
apply pEM1_pequiv' (!trunc_equiv⁻¹ᵉ ⬝e equiv_of_isomorphism e),
|
|
||||||
intro p q, esimp, exact to_respect_mul e (tr p) (tr q)
|
|
||||||
end
|
|
||||||
|
|
||||||
definition pEM1_pequiv_type {X : Type*} [is_conn 0 X] [is_trunc 1 X] : pEM1 (π₁ X) ≃* X :=
|
|
||||||
pEM1_pequiv !isomorphism.refl
|
|
||||||
|
|
||||||
definition EM_pequiv_1.{u} {G : CommGroup.{u}} {X : pType.{u}} (e : π₁ X ≃g G)
|
|
||||||
[is_conn 0 X] [is_trunc 1 X] : EM G 1 ≃* X :=
|
|
||||||
begin
|
|
||||||
refine _ ⬝e* pEM1_pequiv e,
|
|
||||||
apply ptrunc_pequiv,
|
|
||||||
apply is_trunc_pEM1
|
|
||||||
end
|
|
||||||
|
|
||||||
variable (G)
|
|
||||||
definition EMadd1_pequiv_pEM1 : EMadd1 G 0 ≃* pEM1 G :=
|
|
||||||
begin apply ptrunc_pequiv, apply is_trunc_pEM1 end
|
|
||||||
|
|
||||||
definition EM1add1_pequiv_0.{u} {G : CommGroup.{u}} {X : pType.{u}}
|
|
||||||
(e : π₁ X ≃g G) [is_conn 0 X] [is_trunc 1 X] : EMadd1 G 0 ≃* X :=
|
|
||||||
EMadd1_pequiv_pEM1 G ⬝e* pEM1_pequiv e
|
|
||||||
|
|
||||||
definition KG1_pequiv.{u} {X Y : pType.{u}} (e : π₁ X ≃g π₁ Y)
|
|
||||||
[is_conn 0 X] [is_trunc 1 X] [is_conn 0 Y] [is_trunc 1 Y] : X ≃* Y :=
|
|
||||||
(pEM1_pequiv e)⁻¹ᵉ* ⬝e* pEM1_pequiv !isomorphism.refl
|
|
||||||
|
|
||||||
open circle int
|
|
||||||
definition EM_pequiv_circle : K agℤ 1 ≃* S¹* :=
|
|
||||||
!EMadd1_pequiv_pEM1 ⬝e* pEM1_pequiv fundamental_group_of_circle
|
|
||||||
|
|
||||||
/- loops of EM-spaces -/
|
|
||||||
variable {G}
|
|
||||||
definition loop_EMadd1 (n : ℕ) : Ω (EMadd1 G (succ n)) ≃* EMadd1 G n :=
|
|
||||||
begin
|
|
||||||
cases n with n,
|
|
||||||
{ symmetry, apply EM1add1_pequiv_0, rexact homotopy_group_EMadd1 G 1,
|
|
||||||
-- apply is_conn_loop, apply is_conn_EMadd1,
|
|
||||||
apply is_trunc_loop, apply is_trunc_EMadd1},
|
|
||||||
{ refine loop_ptrunc_pequiv _ _ ⬝e* _,
|
|
||||||
rewrite [add_one, succ_sub_two],
|
|
||||||
have succ n + 1 ≤ 2 * succ n, from add_mul_le_mul_add n 1 1,
|
|
||||||
symmetry, refine freudenthal_pequiv _ this, }
|
|
||||||
end
|
|
||||||
|
|
||||||
variable (G)
|
|
||||||
definition loop_EM (n : ℕ) : Ω (K G (succ n)) ≃* K G n :=
|
definition loop_EM (n : ℕ) : Ω (K G (succ n)) ≃* K G n :=
|
||||||
begin
|
begin
|
||||||
cases n with n,
|
cases n with n,
|
||||||
{ refine _ ⬝e* pequiv_of_isomorphism (fundamental_group_pEM1 G),
|
{ refine _ ⬝e* pequiv_of_isomorphism (fundamental_group_EM1 G),
|
||||||
refine loop_pequiv_loop (EMadd1_pequiv_pEM1 G) ⬝e* _,
|
symmetry, apply ptrunc_pequiv },
|
||||||
symmetry, apply ptrunc_pequiv, exact _},
|
{ exact !loop_EMadd1⁻¹ᵉ* }
|
||||||
{ apply loop_EMadd1}
|
|
||||||
end
|
end
|
||||||
|
|
||||||
|
open circle int
|
||||||
|
definition EM_pequiv_circle : K agℤ 1 ≃* S¹* :=
|
||||||
|
EM1_pequiv fundamental_group_of_circle⁻¹ᵍ
|
||||||
|
|
||||||
|
/- Functorial action of Eilenberg-Maclane spaces -/
|
||||||
|
|
||||||
|
definition EM1_functor [constructor] {G H : Group} (φ : G →g H) : EM1 G →* EM1 H :=
|
||||||
|
begin
|
||||||
|
fconstructor,
|
||||||
|
{ intro g, induction g,
|
||||||
|
{ exact base },
|
||||||
|
{ exact pth (φ g) },
|
||||||
|
{ exact ap pth (to_respect_mul φ g h) ⬝ resp_mul (φ g) (φ h) }},
|
||||||
|
{ reflexivity }
|
||||||
|
end
|
||||||
|
|
||||||
|
definition EMadd1_functor [constructor] {G H : CommGroup} (φ : G →g H) (n : ℕ) :
|
||||||
|
EMadd1 G n →* EMadd1 H n :=
|
||||||
|
begin
|
||||||
|
induction n with n ψ,
|
||||||
|
{ exact EM1_functor φ },
|
||||||
|
{ apply ptrunc_functor, apply psusp_functor, exact ψ }
|
||||||
|
end
|
||||||
|
|
||||||
|
definition EM_functor [unfold 4] {G H : CommGroup} (φ : G →g H) (n : ℕ) :
|
||||||
|
K G n →* K H n :=
|
||||||
|
begin
|
||||||
|
cases n with n,
|
||||||
|
{ exact pmap_of_homomorphism φ },
|
||||||
|
{ exact EMadd1_functor φ n }
|
||||||
|
end
|
||||||
|
|
||||||
|
-- TODO: (K G n →* K H n) ≃ (G →g H)
|
||||||
|
|
||||||
|
/- Equivalence of Groups and pointed connected 1-truncated types -/
|
||||||
|
|
||||||
|
definition ptruncconntype10_pequiv (X Y : 1-Type*[0]) (e : π₁ X ≃g π₁ Y) : X ≃* Y :=
|
||||||
|
(EM1_pequiv !isomorphism.refl)⁻¹ᵉ* ⬝e* EM1_pequiv e
|
||||||
|
|
||||||
|
definition EM1_pequiv_ptruncconntype10 (X : 1-Type*[0]) : EM1 (π₁ X) ≃* X :=
|
||||||
|
EM1_pequiv_type X
|
||||||
|
|
||||||
|
definition Group_equiv_ptruncconntype10 [constructor] : Group ≃ 1-Type*[0] :=
|
||||||
|
equiv.MK (λG, ptruncconntype.mk (EM1 G) _ pt !is_conn_EM1)
|
||||||
|
(λX, π₁ X)
|
||||||
|
begin intro X, apply ptruncconntype_eq, esimp, exact EM1_pequiv_type X end
|
||||||
|
begin intro G, apply eq_of_isomorphism, apply fundamental_group_EM1 end
|
||||||
|
|
||||||
|
/- Equivalence of CommGroups and pointed n-connected (n+1)-truncated types (n ≥ 1) -/
|
||||||
|
|
||||||
|
open trunc_index
|
||||||
|
definition ptruncconntype_pequiv : Π(n : ℕ) (X Y : (n.+1)-Type*[n])
|
||||||
|
(e : πg[n+1] X ≃g πg[n+1] Y), X ≃* Y
|
||||||
|
| 0 X Y e := ptruncconntype10_pequiv X Y e
|
||||||
|
| (succ n) X Y e :=
|
||||||
|
begin
|
||||||
|
refine (EMadd1_pequiv_succ n _)⁻¹ᵉ* ⬝e* EMadd1_pequiv_succ n !isomorphism.refl,
|
||||||
|
exact e
|
||||||
|
end
|
||||||
|
|
||||||
|
definition EM1_pequiv_ptruncconntype (n : ℕ) (X : (n+1+1)-Type*[n+1]) :
|
||||||
|
EMadd1 (πag[n+2] X) (succ n) ≃* X :=
|
||||||
|
EMadd1_pequiv_type X n
|
||||||
|
|
||||||
|
definition CommGroup_equiv_ptruncconntype' [constructor] (n : ℕ) :
|
||||||
|
CommGroup ≃ (n + 1 + 1)-Type*[n+1] :=
|
||||||
|
equiv.MK
|
||||||
|
(λG, ptruncconntype.mk (EMadd1 G (n+1)) _ pt _)
|
||||||
|
(λX, πag[n+2] X)
|
||||||
|
begin intro X, apply ptruncconntype_eq, apply EMadd1_pequiv_type end
|
||||||
|
begin intro G, apply CommGroup_eq_of_isomorphism, exact ghomotopy_group_EMadd1 G (n+1) end
|
||||||
|
|
||||||
|
definition CommGroup_equiv_ptruncconntype [constructor] (n : ℕ) :
|
||||||
|
CommGroup ≃ (n.+2)-Type*[n.+1] :=
|
||||||
|
CommGroup_equiv_ptruncconntype' n
|
||||||
|
|
||||||
end EM
|
end EM
|
||||||
|
|
Loading…
Reference in a new issue