feat(library/data/hf): add induction and total order for hf
This commit is contained in:
parent
8c4e5c82ab
commit
aa2a417483
2 changed files with 45 additions and 15 deletions
|
@ -9,18 +9,22 @@ open nat nat.finset decidable
|
|||
namespace finset
|
||||
variable {A : Type}
|
||||
|
||||
private definition to_nat (s : finset nat) : nat :=
|
||||
protected definition to_nat (s : finset nat) : nat :=
|
||||
nat.finset.Sum s (λ n, 2^n)
|
||||
|
||||
private lemma to_nat_empty : to_nat ∅ = 0 :=
|
||||
open finset (to_nat)
|
||||
|
||||
lemma to_nat_empty : to_nat ∅ = 0 :=
|
||||
rfl
|
||||
|
||||
private lemma to_nat_insert {n : nat} {s : finset nat} : n ∉ s → to_nat (insert n s) = 2^n + to_nat s :=
|
||||
lemma to_nat_insert {n : nat} {s : finset nat} : n ∉ s → to_nat (insert n s) = 2^n + to_nat s :=
|
||||
assume h, Sum_insert_of_not_mem _ h
|
||||
|
||||
private definition of_nat (s : nat) : finset nat :=
|
||||
protected definition of_nat (s : nat) : finset nat :=
|
||||
{ n ∈ upto (succ s) | odd (s div 2^n) }
|
||||
|
||||
open finset (of_nat)
|
||||
|
||||
private lemma of_nat_zero : of_nat 0 = ∅ :=
|
||||
rfl
|
||||
|
||||
|
@ -175,7 +179,7 @@ private lemma of_nat_eq_insert : ∀ {n s : nat}, n ∉ of_nat s → of_nat (2^n
|
|||
... ↔ succ m ∈ insert (succ n) (of_nat s) : aux,
|
||||
gen x)
|
||||
|
||||
private lemma of_nat_to_nat (s : finset nat) : of_nat (to_nat s) = s :=
|
||||
lemma of_nat_to_nat (s : finset nat) : of_nat (to_nat s) = s :=
|
||||
finset.induction_on s rfl
|
||||
(λ a s nains ih, by rewrite [to_nat_insert nains, -ih at nains, of_nat_eq_insert nains, ih])
|
||||
|
||||
|
@ -258,7 +262,7 @@ begin
|
|||
add_mul_div_self (dec_trivial : 2 > 0), -ih, to_nat_insert this, add.comm] }
|
||||
end
|
||||
|
||||
private lemma to_nat_of_nat (s : nat) : to_nat (of_nat s) = s :=
|
||||
lemma to_nat_of_nat (s : nat) : to_nat (of_nat s) = s :=
|
||||
nat.strong_induction_on s
|
||||
(λ n ih, by_cases
|
||||
(suppose n = 0, by rewrite this)
|
||||
|
|
|
@ -60,17 +60,28 @@ definition mem (a : hf) (s : hf) : Prop :=
|
|||
finset.mem a (to_finset s)
|
||||
|
||||
infix `∈` := mem
|
||||
notation [priority finset.prio] a ∉ b := ¬ mem a b
|
||||
|
||||
definition not_mem (a : hf) (s : hf) : Prop := ¬ a ∈ s
|
||||
|
||||
infix `∉` := not_mem
|
||||
lemma insert_lt_of_not_mem {a s : hf} : a ∉ s → s < insert a s :=
|
||||
begin
|
||||
unfold [insert, of_finset, equiv.to_fun, finset_nat_equiv_nat, mem, to_finset, equiv.inv],
|
||||
intro h,
|
||||
krewrite [finset.to_nat_insert h, to_nat_of_nat, -zero_add s at {1}],
|
||||
apply add_lt_add_right,
|
||||
apply pow_pos_of_pos _ dec_trivial
|
||||
end
|
||||
|
||||
open decidable
|
||||
protected definition decidable_mem [instance] : ∀ a s, decidable (a ∈ s) :=
|
||||
λ a s, finset.decidable_mem a (to_finset s)
|
||||
|
||||
lemma insert_le (a s : hf) : s ≤ insert a s :=
|
||||
by_cases
|
||||
(suppose a ∈ s, by rewrite [↑insert, insert_eq_of_mem this, of_finset_to_finset])
|
||||
(suppose a ∉ s, le_of_lt (insert_lt_of_not_mem this))
|
||||
|
||||
lemma not_mem_empty (a : hf) : a ∉ ∅ :=
|
||||
begin unfold [not_mem, mem, empty], rewrite to_finset_of_finset, apply finset.not_mem_empty end
|
||||
begin unfold [mem, empty], rewrite to_finset_of_finset, apply finset.not_mem_empty end
|
||||
|
||||
lemma mem_insert (a s : hf) : a ∈ insert a s :=
|
||||
begin unfold [mem, insert], rewrite to_finset_of_finset, apply finset.mem_insert end
|
||||
|
@ -93,6 +104,21 @@ by rewrite [*of_finset_to_finset at this]; exact this
|
|||
theorem insert_eq_of_mem {a : hf} {s : hf} : a ∈ s → insert a s = s :=
|
||||
begin unfold mem, intro h, unfold [mem, insert], rewrite (finset.insert_eq_of_mem h), rewrite of_finset_to_finset end
|
||||
|
||||
protected theorem induction [recursor 4] {P : hf → Prop}
|
||||
(h₁ : P empty) (h₂ : ∀ (a s : hf), a ∉ s → P s → P (insert a s)) (s : hf) : P s :=
|
||||
assert P (of_finset (to_finset s)), from
|
||||
@finset.induction _ _ _ h₁
|
||||
(λ a s nain ih,
|
||||
begin
|
||||
unfold [mem, insert] at h₂,
|
||||
rewrite -(to_finset_of_finset s) at nain,
|
||||
have P (insert a (of_finset s)), by exact h₂ a (of_finset s) nain ih,
|
||||
rewrite [↑insert at this, to_finset_of_finset at this],
|
||||
exact this
|
||||
end)
|
||||
(to_finset s),
|
||||
by rewrite of_finset_to_finset at this; exact this
|
||||
|
||||
/- union -/
|
||||
definition union (s₁ s₂ : hf) : hf :=
|
||||
of_finset (finset.union (to_finset s₁) (to_finset s₂))
|
||||
|
@ -214,13 +240,13 @@ definition erase (a : hf) (s : hf) : hf :=
|
|||
of_finset (erase a (to_finset s))
|
||||
|
||||
theorem mem_erase (a : hf) (s : hf) : a ∉ erase a s :=
|
||||
begin unfold [not_mem, mem, erase], rewrite to_finset_of_finset, apply finset.mem_erase end
|
||||
begin unfold [mem, erase], rewrite to_finset_of_finset, apply finset.mem_erase end
|
||||
|
||||
theorem card_erase_of_mem {a : hf} {s : hf} : a ∈ s → card (erase a s) = pred (card s) :=
|
||||
begin unfold mem, intro h, unfold [erase, card], rewrite to_finset_of_finset, apply finset.card_erase_of_mem h end
|
||||
|
||||
theorem card_erase_of_not_mem {a : hf} {s : hf} : a ∉ s → card (erase a s) = card s :=
|
||||
begin unfold [not_mem, mem], intro h, unfold [erase, card], rewrite to_finset_of_finset, apply finset.card_erase_of_not_mem h end
|
||||
begin unfold [mem], intro h, unfold [erase, card], rewrite to_finset_of_finset, apply finset.card_erase_of_not_mem h end
|
||||
|
||||
theorem erase_empty (a : hf) : erase a ∅ = ∅ :=
|
||||
rfl
|
||||
|
@ -244,7 +270,7 @@ propext !mem_erase_iff
|
|||
|
||||
theorem erase_insert {a : hf} {s : hf} : a ∉ s → erase a (insert a s) = s :=
|
||||
begin
|
||||
unfold [not_mem, mem, erase, insert],
|
||||
unfold [mem, erase, insert],
|
||||
intro h, rewrite [to_finset_of_finset, finset.erase_insert h, of_finset_to_finset]
|
||||
end
|
||||
|
||||
|
@ -299,7 +325,7 @@ theorem erase_subset (a : hf) (s : hf) : erase a s ⊆ s :=
|
|||
begin unfold [subset, erase], rewrite to_finset_of_finset, apply finset.erase_subset a (to_finset s) end
|
||||
|
||||
theorem erase_eq_of_not_mem {a : hf} {s : hf} : a ∉ s → erase a s = s :=
|
||||
begin unfold [not_mem, mem, erase], intro h, rewrite [finset.erase_eq_of_not_mem h, of_finset_to_finset] end
|
||||
begin unfold [mem, erase], intro h, rewrite [finset.erase_eq_of_not_mem h, of_finset_to_finset] end
|
||||
|
||||
theorem erase_insert_subset (a : hf) (s : hf) : erase a (insert a s) ⊆ s :=
|
||||
begin unfold [erase, insert, subset], rewrite [*to_finset_of_finset], apply finset.erase_insert_subset a (to_finset s) end
|
||||
|
@ -374,7 +400,7 @@ theorem powerset_empty : 𝒫 ∅ = insert ∅ ∅ :=
|
|||
rfl
|
||||
|
||||
theorem powerset_insert {a : hf} {s : hf} : a ∉ s → 𝒫 (insert a s) = 𝒫 s ∪ image (insert a) (𝒫 s) :=
|
||||
begin unfold [not_mem, mem, powerset, insert, union, image], rewrite [*to_finset_of_finset], intro h,
|
||||
begin unfold [mem, powerset, insert, union, image], rewrite [*to_finset_of_finset], intro h,
|
||||
have (λ (x : finset hf), of_finset (finset.insert a x)) = (λ (x : finset hf), of_finset (finset.insert a (to_finset (of_finset x)))), from
|
||||
funext (λ x, by rewrite to_finset_of_finset),
|
||||
rewrite [finset.powerset_insert h, finset.image_union, -*finset.image_compose,↑compose,this]
|
||||
|
|
Loading…
Reference in a new issue