fix(library/hott) : convert to new path notations
Convert definitions and proofs to new notations for inverse and cocatenation. Adapt to now right associative of concatenation.
This commit is contained in:
parent
a169f791df
commit
abd5c574ad
1 changed files with 37 additions and 37 deletions
|
@ -70,21 +70,21 @@ namespace IsEquiv
|
|||
|
||||
-- The identity function is an equivalence.
|
||||
|
||||
definition idIsEquiv [instance] : (@IsEquiv A A id) := IsEquiv_mk id (λa, idp) (λa, idp) (λa, idp)
|
||||
definition id_closed [instance] : (@IsEquiv A A id) := IsEquiv_mk id (λa, idp) (λa, idp) (λa, idp)
|
||||
|
||||
-- The composition of two equivalences is, again, an equivalence.
|
||||
|
||||
definition comp_closed [instance] (Hf : IsEquiv f) (Hg : IsEquiv g) : (IsEquiv (g ∘ f)) :=
|
||||
IsEquiv_mk ((inv Hf) ∘ (inv Hg))
|
||||
(λc, ap g (retr Hf ((inv Hg) c)) @ retr Hg c)
|
||||
(λa, ap (inv Hf) (sect Hg (f a)) @ sect Hf a)
|
||||
(λa, (whiskerL _ (adj Hg (f a))) @
|
||||
(ap_pp g _ _)^ @
|
||||
ap02 g (concat_A1p (retr Hf) (sect Hg (f a))^ @
|
||||
(ap_compose (inv Hf) f _ @@ adj Hf a) @
|
||||
(ap_pp f _ _)^
|
||||
) @
|
||||
(ap_compose f g _)^
|
||||
(λc, ap g (retr Hf ((inv Hg) c)) ⬝ retr Hg c)
|
||||
(λa, ap (inv Hf) (sect Hg (f a)) ⬝ sect Hf a)
|
||||
(λa, (whiskerL _ (adj Hg (f a))) ⬝
|
||||
(ap_pp g _ _)⁻¹ ⬝
|
||||
ap02 g (concat_A1p (retr Hf) (sect Hg (f a))⁻¹ ⬝
|
||||
(ap_compose (inv Hf) f _ ◾ adj Hf a) ⬝
|
||||
(ap_pp f _ _)⁻¹
|
||||
) ⬝
|
||||
(ap_compose f g _)⁻¹
|
||||
)
|
||||
|
||||
-- Any function equal to an equivalence is an equivlance as well.
|
||||
|
@ -93,34 +93,34 @@ namespace IsEquiv
|
|||
|
||||
-- Any function pointwise equal to an equivalence is an equivalence as well.
|
||||
definition homotopic (Hf : IsEquiv f) (Heq : f ∼ f') : (IsEquiv f') :=
|
||||
let sect' := (λ b, (Heq (inv Hf b))^ @ retr Hf b) in
|
||||
let retr' := (λ a, (ap (inv Hf) (Heq a))^ @ sect Hf a) in
|
||||
let sect' := (λ b, (Heq (inv Hf b))⁻¹ ⬝ retr Hf b) in
|
||||
let retr' := (λ a, (ap (inv Hf) (Heq a))⁻¹ ⬝ sect Hf a) in
|
||||
let adj' := (λ (a : A),
|
||||
let ff'a := Heq a in
|
||||
let invf := inv Hf in
|
||||
let secta := sect Hf a in
|
||||
let retrfa := retr Hf (f a) in
|
||||
let retrf'a := retr Hf (f' a) in
|
||||
have eq1 : ap f secta @ ff'a ≈ ap f (ap invf ff'a) @ retr Hf (f' a),
|
||||
from calc ap f secta @ ff'a
|
||||
≈ retrfa @ ff'a : (ap _ (adj Hf _ ))^
|
||||
... ≈ ap (f ∘ invf) ff'a @ retrf'a : !concat_A1p^
|
||||
... ≈ ap f (ap invf ff'a) @ retr Hf (f' a) : {ap_compose invf f ff'a},
|
||||
have eq2 : retrf'a ≈ Heq (invf (f' a)) @ ((ap f' (ap invf ff'a))^ @ ap f' secta),
|
||||
have eq1 : _ ≈ _,
|
||||
from calc ap f secta ⬝ ff'a
|
||||
≈ retrfa ⬝ ff'a : (ap _ (adj Hf _ ))⁻¹
|
||||
... ≈ ap (f ∘ invf) ff'a ⬝ retrf'a : !concat_A1p⁻¹
|
||||
... ≈ ap f (ap invf ff'a) ⬝ retr Hf (f' a) : {ap_compose invf f ff'a},
|
||||
have eq2 : _ ≈ _,
|
||||
from calc retrf'a
|
||||
≈ (ap f (ap invf ff'a))^ @ (ap f secta @ ff'a) : moveL_Vp _ _ _ (eq1^)
|
||||
... ≈ ap f (ap invf ff'a)^ @ (ap f secta @ Heq a) : {ap_V invf ff'a}
|
||||
... ≈ ap f (ap invf ff'a)^ @ (Heq (invf (f a)) @ ap f' secta) : {!concat_Ap}
|
||||
... ≈ ap f (ap invf ff'a)^ @ Heq (invf (f a)) @ ap f' secta : {!concat_pp_p^}
|
||||
... ≈ ap f ((ap invf ff'a)^) @ Heq (invf (f a)) @ ap f' secta : {!ap_V^}
|
||||
... ≈ Heq (invf (f' a)) @ ap f' ((ap invf ff'a)^) @ ap f' secta : {!concat_Ap}
|
||||
... ≈ Heq (invf (f' a)) @ (ap f' (ap invf ff'a))^ @ ap f' secta : {!ap_V}
|
||||
... ≈ Heq (invf (f' a)) @ ((ap f' (ap invf ff'a))^ @ ap f' secta) : !concat_pp_p,
|
||||
have eq3 : (Heq (invf (f' a)))^ @ retr Hf (f' a) ≈ ap f' ((ap invf ff'a)^ @ secta),
|
||||
from calc (Heq (invf (f' a)))^ @ retr Hf (f' a)
|
||||
≈ (ap f' (ap invf ff'a))^ @ ap f' secta : moveR_Vp _ _ _ eq2
|
||||
... ≈ (ap f' ((ap invf ff'a)^)) @ ap f' secta : {!ap_V^}
|
||||
... ≈ ap f' ((ap invf ff'a)^ @ secta) : !ap_pp^,
|
||||
≈ (ap f (ap invf ff'a))⁻¹ ⬝ (ap f secta ⬝ ff'a) : moveL_Vp _ _ _ (eq1⁻¹)
|
||||
... ≈ ap f (ap invf ff'a)⁻¹ ⬝ (ap f secta ⬝ Heq a) : {ap_V invf ff'a}
|
||||
... ≈ ap f (ap invf ff'a)⁻¹ ⬝ (Heq (invf (f a)) ⬝ ap f' secta) : {!concat_Ap}
|
||||
... ≈ (ap f (ap invf ff'a)⁻¹ ⬝ Heq (invf (f a))) ⬝ ap f' secta : {!concat_pp_p⁻¹}
|
||||
... ≈ (ap f ((ap invf ff'a)⁻¹) ⬝ Heq (invf (f a))) ⬝ ap f' secta : {!ap_V⁻¹}
|
||||
... ≈ (Heq (invf (f' a)) ⬝ ap f' ((ap invf ff'a)⁻¹)) ⬝ ap f' secta : {!concat_Ap}
|
||||
... ≈ (Heq (invf (f' a)) ⬝ (ap f' (ap invf ff'a))⁻¹) ⬝ ap f' secta : {!ap_V}
|
||||
... ≈ Heq (invf (f' a)) ⬝ ((ap f' (ap invf ff'a))⁻¹ ⬝ ap f' secta) : !concat_pp_p,
|
||||
have eq3 : _ ≈ _,
|
||||
from calc (Heq (invf (f' a)))⁻¹ ⬝ retr Hf (f' a)
|
||||
≈ (ap f' (ap invf ff'a))⁻¹ ⬝ ap f' secta : moveR_Vp _ _ _ eq2
|
||||
... ≈ (ap f' ((ap invf ff'a)⁻¹)) ⬝ ap f' secta : {!ap_V⁻¹}
|
||||
... ≈ ap f' ((ap invf ff'a)⁻¹ ⬝ secta) : !ap_pp⁻¹,
|
||||
eq3) in
|
||||
IsEquiv_mk (inv Hf) sect' retr' adj'
|
||||
|
||||
|
@ -135,23 +135,23 @@ namespace IsEquiv
|
|||
homotopic (comp_closed Hgf (inv_closed Hg)) (λa, sect Hg (f a))
|
||||
|
||||
definition transport (P : A → Type) {x y : A} (p : x ≈ y) : (IsEquiv (transport P p)) :=
|
||||
IsEquiv_mk (transport P (p^)) (transport_pV P p) (transport_Vp P p) (transport_pVp P p)
|
||||
IsEquiv_mk (transport P (p⁻¹)) (transport_pV P p) (transport_Vp P p) (transport_pVp P p)
|
||||
|
||||
--Rewrite rules
|
||||
section
|
||||
variables {Hf : IsEquiv f}
|
||||
|
||||
definition moveR_M {x : A} {y : B} (p : x ≈ (inv Hf) y) : (f x ≈ y) :=
|
||||
ap f p @ retr Hf y
|
||||
(ap f p) ⬝ (retr Hf y)
|
||||
|
||||
definition moveL_M {x : A} {y : B} (p : (inv Hf) y ≈ x) : (y ≈ f x) :=
|
||||
(moveR_M (p^))^
|
||||
(moveR_M (p⁻¹))⁻¹
|
||||
|
||||
definition moveR_V {x : B} {y : A} (p : x ≈ f y) : (inv Hf) x ≈ y :=
|
||||
ap (inv Hf) p @ sect Hf y
|
||||
ap (inv Hf) p ⬝ sect Hf y
|
||||
|
||||
definition moveL_V {x : B} {y : A} (p : f y ≈ x) : y ≈ (inv Hf) x :=
|
||||
(moveR_V (p^))^
|
||||
(moveR_V (p⁻¹))⁻¹
|
||||
|
||||
end
|
||||
|
||||
|
@ -161,7 +161,7 @@ namespace Equiv
|
|||
|
||||
variables {A B C : Type} (eqf : A ≃ B)
|
||||
|
||||
theorem id : A ≃ A := Equiv_mk id IsEquiv.idIsEquiv
|
||||
theorem id : A ≃ A := Equiv_mk id IsEquiv.id_closed
|
||||
|
||||
theorem compose (eqg: B ≃ C) : A ≃ C :=
|
||||
Equiv_mk ((equiv_fun eqg) ∘ (equiv_fun eqf))
|
||||
|
|
Loading…
Reference in a new issue