refactor(library/standard): cleanup notation

Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
This commit is contained in:
Leonardo de Moura 2014-07-25 11:36:28 -07:00
parent a450ad5a95
commit abe1dbd7e0
5 changed files with 32 additions and 35 deletions

View file

@ -116,6 +116,6 @@ using decidable
theorem decidable_eq [instance] (a b : bool) : decidable (a = b) theorem decidable_eq [instance] (a b : bool) : decidable (a = b)
:= bool_rec := bool_rec
(bool_rec (inl (refl '0)) (inr b0_ne_b1) b) (bool_rec (inl (refl '0)) (inr b0_ne_b1) b)
(bool_rec (inr (not_eq_symm b0_ne_b1)) (inl (refl '1)) b) (bool_rec (inr (ne_symm b0_ne_b1)) (inl (refl '1)) b)
a a
end end

View file

@ -23,13 +23,13 @@ theorem prop_complete_swapped (a : Prop) : a = false a = true
a a
theorem not_true : (¬true) = false theorem not_true : (¬true) = false
:= have aux : ¬ (¬true) = true, from := have aux : (¬true) ≠ true, from
assume H : (¬true) = true, assume H : (¬true) = true,
absurd_not_true (H⁻¹ ▸ trivial), absurd_not_true (H⁻¹ ▸ trivial),
resolve_right (prop_complete (¬true)) aux resolve_right (prop_complete (¬true)) aux
theorem not_false : (¬false) = true theorem not_false : (¬false) = true
:= have aux : ¬ (¬false) = false, from := have aux : (¬false) ≠ false, from
assume H : (¬false) = false, assume H : (¬false) = false,
H ▸ not_false_trivial, H ▸ not_false_trivial,
resolve_right (prop_complete_swapped (¬false)) aux resolve_right (prop_complete_swapped (¬false)) aux

View file

@ -196,11 +196,8 @@ theorem a_neq_a_elim {A : Type} {a : A} (H : a ≠ a) : false
theorem ne_irrefl {A : Type} {a : A} (H : a ≠ a) : false theorem ne_irrefl {A : Type} {a : A} (H : a ≠ a) : false
:= H (refl a) := H (refl a)
theorem not_eq_symm {A : Type} {a b : A} (H : ¬ a = b) : ¬ b = a
:= assume H1 : b = a, H (H1⁻¹)
theorem ne_symm {A : Type} {a b : A} (H : a ≠ b) : b ≠ a theorem ne_symm {A : Type} {a b : A} (H : a ≠ b) : b ≠ a
:= not_eq_symm H := assume H1 : b = a, H (H1⁻¹)
theorem eq_ne_trans {A : Type} {a b c : A} (H1 : a = b) (H2 : b ≠ c) : a ≠ c theorem eq_ne_trans {A : Type} {a b c : A} (H1 : a = b) (H2 : b ≠ c) : a ≠ c
:= H1⁻¹ ▸ H2 := H1⁻¹ ▸ H2