refactor(library/standard): cleanup notation

Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
This commit is contained in:
Leonardo de Moura 2014-07-25 11:36:28 -07:00
parent a450ad5a95
commit abe1dbd7e0
5 changed files with 32 additions and 35 deletions

View file

@ -116,6 +116,6 @@ using decidable
theorem decidable_eq [instance] (a b : bool) : decidable (a = b) theorem decidable_eq [instance] (a b : bool) : decidable (a = b)
:= bool_rec := bool_rec
(bool_rec (inl (refl '0)) (inr b0_ne_b1) b) (bool_rec (inl (refl '0)) (inr b0_ne_b1) b)
(bool_rec (inr (not_eq_symm b0_ne_b1)) (inl (refl '1)) b) (bool_rec (inr (ne_symm b0_ne_b1)) (inl (refl '1)) b)
a a
end end

View file

@ -13,7 +13,7 @@ theorem case (P : Prop → Prop) (H1 : P true) (H2 : P false) (a : Prop) : P a
theorem em (a : Prop) : a ¬a theorem em (a : Prop) : a ¬a
:= or_elim (prop_complete a) := or_elim (prop_complete a)
(assume Ht : a = true, or_intro_left (¬ a) (eqt_elim Ht)) (assume Ht : a = true, or_intro_left (¬a) (eqt_elim Ht))
(assume Hf : a = false, or_intro_right a (eqf_elim Hf)) (assume Hf : a = false, or_intro_right a (eqf_elim Hf))
theorem prop_complete_swapped (a : Prop) : a = false a = true theorem prop_complete_swapped (a : Prop) : a = false a = true
@ -23,16 +23,16 @@ theorem prop_complete_swapped (a : Prop) : a = false a = true
a a
theorem not_true : (¬true) = false theorem not_true : (¬true) = false
:= have aux : ¬ (¬true) = true, from := have aux : (¬true) ≠ true, from
assume H : (¬true) = true, assume H : (¬true) = true,
absurd_not_true (H⁻¹ ▸ trivial), absurd_not_true (H⁻¹ ▸ trivial),
resolve_right (prop_complete (¬true)) aux resolve_right (prop_complete (¬true)) aux
theorem not_false : (¬false) = true theorem not_false : (¬false) = true
:= have aux : ¬ (¬false) = false, from := have aux : (¬false) ≠ false, from
assume H : (¬false) = false, assume H : (¬false) = false,
H ▸ not_false_trivial, H ▸ not_false_trivial,
resolve_right (prop_complete_swapped (¬ false)) aux resolve_right (prop_complete_swapped (¬false)) aux
theorem not_not_eq (a : Prop) : (¬¬a) = a theorem not_not_eq (a : Prop) : (¬¬a) = a
:= case (λ x, (¬¬x) = x) := case (λ x, (¬¬x) = x)
@ -83,41 +83,41 @@ theorem eq_id {A : Type} (a : A) : (a = a) = true
theorem heq_id {A : Type} (a : A) : (a == a) = true theorem heq_id {A : Type} (a : A) : (a == a) = true
:= eqt_intro (hrefl a) := eqt_intro (hrefl a)
theorem not_or (a b : Prop) : (¬ (a b)) = (¬ a ∧ ¬ b) theorem not_or (a b : Prop) : (¬(a b)) = (¬a ∧ ¬b)
:= propext := propext
(assume H, or_elim (em a) (assume H, or_elim (em a)
(assume Ha, absurd_elim (¬ a ∧ ¬ b) (or_intro_left b Ha) H) (assume Ha, absurd_elim (¬a ∧ ¬b) (or_intro_left b Ha) H)
(assume Hna, or_elim (em b) (assume Hna, or_elim (em b)
(assume Hb, absurd_elim (¬ a ∧ ¬ b) (or_intro_right a Hb) H) (assume Hb, absurd_elim (¬a ∧ ¬b) (or_intro_right a Hb) H)
(assume Hnb, and_intro Hna Hnb))) (assume Hnb, and_intro Hna Hnb)))
(assume (H : ¬ a ∧ ¬ b) (N : a b), (assume (H : ¬a ∧ ¬b) (N : a b),
or_elim N or_elim N
(assume Ha, absurd Ha (and_elim_left H)) (assume Ha, absurd Ha (and_elim_left H))
(assume Hb, absurd Hb (and_elim_right H))) (assume Hb, absurd Hb (and_elim_right H)))
theorem not_and (a b : Prop) : (¬ (a ∧ b)) = (¬ a ¬ b) theorem not_and (a b : Prop) : (¬(a ∧ b)) = (¬a ¬b)
:= propext := propext
(assume H, or_elim (em a) (assume H, or_elim (em a)
(assume Ha, or_elim (em b) (assume Ha, or_elim (em b)
(assume Hb, absurd_elim (¬ a ¬ b) (and_intro Ha Hb) H) (assume Hb, absurd_elim (¬a ¬b) (and_intro Ha Hb) H)
(assume Hnb, or_intro_right (¬ a) Hnb)) (assume Hnb, or_intro_right (¬a) Hnb))
(assume Hna, or_intro_left (¬ b) Hna)) (assume Hna, or_intro_left (¬b) Hna))
(assume (H : ¬ a ¬ b) (N : a ∧ b), (assume (H : ¬a ¬b) (N : a ∧ b),
or_elim H or_elim H
(assume Hna, absurd (and_elim_left N) Hna) (assume Hna, absurd (and_elim_left N) Hna)
(assume Hnb, absurd (and_elim_right N) Hnb)) (assume Hnb, absurd (and_elim_right N) Hnb))
theorem imp_or (a b : Prop) : (a → b) = (¬ a b) theorem imp_or (a b : Prop) : (a → b) = (¬a b)
:= propext := propext
(assume H : a → b, (or_elim (em a) (assume H : a → b, (or_elim (em a)
(assume Ha : a, or_intro_right (¬ a) (H Ha)) (assume Ha : a, or_intro_right (¬a) (H Ha))
(assume Hna : ¬ a, or_intro_left b Hna))) (assume Hna : ¬a, or_intro_left b Hna)))
(assume (H : ¬ a b) (Ha : a), (assume (H : ¬a b) (Ha : a),
resolve_right H ((not_not_eq a)⁻¹ ◂ Ha)) resolve_right H ((not_not_eq a)⁻¹ ◂ Ha))
theorem not_implies (a b : Prop) : (¬ (a → b)) = (a ∧ ¬b) theorem not_implies (a b : Prop) : (¬(a → b)) = (a ∧ ¬b)
:= calc (¬ (a → b)) = (¬(¬a b)) : {imp_or a b} := calc (¬(a → b)) = (¬(¬a b)) : {imp_or a b}
... = (¬¬a ∧ ¬b) : not_or (¬ a) b ... = (¬¬a ∧ ¬b) : not_or (¬a) b
... = (a ∧ ¬b) : {not_not_eq a} ... = (a ∧ ¬b) : {not_not_eq a}
theorem a_eq_not_a (a : Prop) : (a = ¬a) = false theorem a_eq_not_a (a : Prop) : (a = ¬a) = false
@ -125,7 +125,7 @@ theorem a_eq_not_a (a : Prop) : (a = ¬a) = false
(assume H, or_elim (em a) (assume H, or_elim (em a)
(assume Ha, absurd Ha (H ▸ Ha)) (assume Ha, absurd Ha (H ▸ Ha))
(assume Hna, absurd (H⁻¹ ▸ Hna) Hna)) (assume Hna, absurd (H⁻¹ ▸ Hna) Hna))
(assume H, false_elim (a = ¬ a) H) (assume H, false_elim (a = ¬a) H)
theorem true_eq_false : (true = false) = false theorem true_eq_false : (true = false) = false
:= not_true ▸ (a_eq_not_a true) := not_true ▸ (a_eq_not_a true)

View file

@ -44,8 +44,8 @@ lemma p_implies_uv [private] : p → u = v
show u = v, from show u = v, from
Hpred ▸ (refl (epsilon (λ x, x = true p))) Hpred ▸ (refl (epsilon (λ x, x = true p)))
theorem em : p ¬ p theorem em : p ¬p
:= have H : ¬(u = v) → ¬ p, from contrapos p_implies_uv, := have H : ¬(u = v) → ¬p, from contrapos p_implies_uv,
or_elim uv_implies_p or_elim uv_implies_p
(assume Hne : ¬(u = v), or_intro_right p (H Hne)) (assume Hne : ¬(u = v), or_intro_right p (H Hne))
(assume Hp : p, or_intro_left (¬p) Hp) (assume Hp : p, or_intro_left (¬p) Hp)

View file

@ -32,7 +32,7 @@ theorem not_not_intro {a : Prop} (Ha : a) : ¬¬a
theorem mt {a b : Prop} (H1 : a → b) (H2 : ¬b) : ¬a theorem mt {a b : Prop} (H1 : a → b) (H2 : ¬b) : ¬a
:= assume Ha : a, absurd (H1 Ha) H2 := assume Ha : a, absurd (H1 Ha) H2
theorem contrapos {a b : Prop} (H : a → b) : ¬ b → ¬ a theorem contrapos {a b : Prop} (H : a → b) : ¬b → ¬a
:= assume Hnb : ¬b, mt H Hnb := assume Hnb : ¬b, mt H Hnb
theorem absurd_elim {a : Prop} (b : Prop) (H1 : a) (H2 : ¬a) : b theorem absurd_elim {a : Prop} (b : Prop) (H1 : a) (H2 : ¬a) : b
@ -196,11 +196,8 @@ theorem a_neq_a_elim {A : Type} {a : A} (H : a ≠ a) : false
theorem ne_irrefl {A : Type} {a : A} (H : a ≠ a) : false theorem ne_irrefl {A : Type} {a : A} (H : a ≠ a) : false
:= H (refl a) := H (refl a)
theorem not_eq_symm {A : Type} {a b : A} (H : ¬ a = b) : ¬ b = a
:= assume H1 : b = a, H (H1⁻¹)
theorem ne_symm {A : Type} {a b : A} (H : a ≠ b) : b ≠ a theorem ne_symm {A : Type} {a b : A} (H : a ≠ b) : b ≠ a
:= not_eq_symm H := assume H1 : b = a, H (H1⁻¹)
theorem eq_ne_trans {A : Type} {a b c : A} (H1 : a = b) (H2 : b ≠ c) : a ≠ c theorem eq_ne_trans {A : Type} {a b c : A} (H1 : a = b) (H2 : b ≠ c) : a ≠ c
:= H1⁻¹ ▸ H2 := H1⁻¹ ▸ H2
@ -301,14 +298,14 @@ theorem forall_not_exists {A : Type} {p : A → Prop} (H2 : ∀x, p x) : ¬∃x,
obtain (w : A) (Hw : ¬p w), from H1, obtain (w : A) (Hw : ¬p w), from H1,
absurd (H2 w) Hw absurd (H2 w) Hw
definition exists_unique {A : Type} (p : A → Prop) := ∃x, p x ∧ ∀y, y ≠ x → ¬ p y definition exists_unique {A : Type} (p : A → Prop) := ∃x, p x ∧ ∀y, y ≠ x → ¬p y
notation `∃!` binders `,` r:(scoped P, exists_unique P) := r notation `∃!` binders `,` r:(scoped P, exists_unique P) := r
theorem exists_unique_intro {A : Type} {p : A → Prop} (w : A) (H1 : p w) (H2 : ∀y, y ≠ w → ¬ p y) : ∃!x, p x theorem exists_unique_intro {A : Type} {p : A → Prop} (w : A) (H1 : p w) (H2 : ∀y, y ≠ w → ¬p y) : ∃!x, p x
:= exists_intro w (and_intro H1 H2) := exists_intro w (and_intro H1 H2)
theorem exists_unique_elim {A : Type} {p : A → Prop} {b : Prop} (H2 : ∃!x, p x) (H1 : ∀x, p x → (∀y, y ≠ x → ¬ p y) → b) : b theorem exists_unique_elim {A : Type} {p : A → Prop} {b : Prop} (H2 : ∃!x, p x) (H1 : ∀x, p x → (∀y, y ≠ x → ¬p y) → b) : b
:= obtain w Hw, from H2, := obtain w Hw, from H2,
H1 w (and_elim_left Hw) (and_elim_right Hw) H1 w (and_elim_left Hw) (and_elim_right Hw)

View file

@ -14,8 +14,8 @@ theorem wf_induction {A : Type} {R : A → A → Prop} {P : A → Prop} (Hwf : w
: ∀x, P x : ∀x, P x
:= by_contradiction (assume N : ¬∀x, P x, := by_contradiction (assume N : ¬∀x, P x,
obtain (w : A) (Hw : ¬P w), from not_forall_exists N, obtain (w : A) (Hw : ¬P w), from not_forall_exists N,
-- The main "trick" is to define Q x as ¬ P x. -- The main "trick" is to define Q x as ¬P x.
-- Since R is well-founded, there must be a R-minimal element r s.t. Q r (which is ¬ P r) -- Since R is well-founded, there must be a R-minimal element r s.t. Q r (which is ¬P r)
let Q [inline] x := ¬P x in let Q [inline] x := ¬P x in
have Qw : ∃w, Q w, from exists_intro w Hw, have Qw : ∃w, Q w, from exists_intro w Hw,
have Qwf : ∃min, Q min ∧ ∀b, R b min → ¬Q b, from Hwf Q Qw, have Qwf : ∃min, Q min ∧ ∀b, R b min → ¬Q b, from Hwf Q Qw,
@ -23,7 +23,7 @@ theorem wf_induction {A : Type} {R : A → A → Prop} {P : A → Prop} (Hwf : w
-- Using the inductive hypothesis iH and Hr, we show P r, and derive the contradiction. -- Using the inductive hypothesis iH and Hr, we show P r, and derive the contradiction.
have s1 : ∀b, R b r → P b, from have s1 : ∀b, R b r → P b, from
take b : A, assume H : R b r, take b : A, assume H : R b r,
-- We are using Hr to derive ¬ ¬ P b -- We are using Hr to derive ¬¬P b
not_not_elim (and_elim_right Hr b H), not_not_elim (and_elim_right Hr b H),
have s2 : P r, from iH r s1, have s2 : P r, from iH r s1,
have s3 : ¬P r, from and_elim_left Hr, have s3 : ¬P r, from and_elim_left Hr,