fix(library/tactic/rewrite_tactic): use relaxed type checker when processing rewrite "proof step"

That is, the restricted type checker should only be used in the
matching/unification step.

fixes #583
This commit is contained in:
Leonardo de Moura 2015-05-07 09:57:23 -07:00
parent e0b7017435
commit ac24f19210
3 changed files with 63 additions and 15 deletions

View file

@ -540,7 +540,7 @@ class rewrite_fn {
name_generator m_ngen; name_generator m_ngen;
type_checker_ptr m_tc; type_checker_ptr m_tc;
type_checker_ptr m_matcher_tc; type_checker_ptr m_matcher_tc;
type_checker_ptr m_unifier_tc; // reduce_to and check_trivial type_checker_ptr m_relaxed_tc; // reduce_to and check_trivial
rewrite_match_plugin m_mplugin; rewrite_match_plugin m_mplugin;
goal m_g; goal m_g;
local_context m_ctx; local_context m_ctx;
@ -755,7 +755,7 @@ class rewrite_fn {
buffer<constraint> cs; buffer<constraint> cs;
to_buffer(ecs.second, cs); to_buffer(ecs.second, cs);
constraint_seq cs_seq; constraint_seq cs_seq;
if (!m_unifier_tc->is_def_eq(t, new_e, justification(), cs_seq)) if (!m_relaxed_tc->is_def_eq(t, new_e, justification(), cs_seq))
return none_expr(); return none_expr();
cs_seq.linearize(cs); cs_seq.linearize(cs);
unifier_config cfg; unifier_config cfg;
@ -892,10 +892,10 @@ class rewrite_fn {
// Remark: we discard constraints generated producing the pattern. // Remark: we discard constraints generated producing the pattern.
// Patterns are only used to locate positions where the rule should be applied. // Patterns are only used to locate positions where the rule should be applied.
expr rule = get_rewrite_rule(e); expr rule = get_rewrite_rule(e);
expr rule_type = m_tc->whnf(m_tc->infer(rule).first).first; expr rule_type = m_relaxed_tc->whnf(m_relaxed_tc->infer(rule).first).first;
while (is_pi(rule_type)) { while (is_pi(rule_type)) {
expr meta = mk_meta(binding_domain(rule_type)); expr meta = mk_meta(binding_domain(rule_type));
rule_type = m_tc->whnf(instantiate(binding_body(rule_type), meta)).first; rule_type = m_relaxed_tc->whnf(instantiate(binding_body(rule_type), meta)).first;
} }
if (!is_eq(rule_type)) if (!is_eq(rule_type))
throw_rewrite_exception("invalid rewrite tactic, given lemma is not an equality"); throw_rewrite_exception("invalid rewrite tactic, given lemma is not an equality");
@ -1079,7 +1079,7 @@ class rewrite_fn {
buffer<constraint> cs; buffer<constraint> cs;
to_buffer(rcs.second, cs); to_buffer(rcs.second, cs);
constraint_seq cs_seq; constraint_seq cs_seq;
expr rule_type = m_tc->whnf(m_tc->infer(rule, cs_seq), cs_seq); expr rule_type = m_relaxed_tc->whnf(m_relaxed_tc->infer(rule, cs_seq), cs_seq);
while (is_pi(rule_type)) { while (is_pi(rule_type)) {
expr meta; expr meta;
if (binding_info(rule_type).is_inst_implicit()) { if (binding_info(rule_type).is_inst_implicit()) {
@ -1089,7 +1089,7 @@ class rewrite_fn {
} else { } else {
meta = mk_meta(binding_domain(rule_type)); meta = mk_meta(binding_domain(rule_type));
} }
rule_type = m_tc->whnf(instantiate(binding_body(rule_type), meta), cs_seq); rule_type = m_relaxed_tc->whnf(instantiate(binding_body(rule_type), meta), cs_seq);
rule = mk_app(rule, meta); rule = mk_app(rule, meta);
} }
lean_assert(is_eq(rule_type)); lean_assert(is_eq(rule_type));
@ -1124,12 +1124,12 @@ class rewrite_fn {
if (symm) { if (symm) {
return unify_result(rule, lhs); return unify_result(rule, lhs);
} else { } else {
rule = mk_symm(*m_tc, rule); rule = mk_symm(*m_relaxed_tc, rule);
return unify_result(rule, rhs); return unify_result(rule, rhs);
} }
} else { } else {
if (symm) { if (symm) {
rule = mk_symm(*m_tc, rule); rule = mk_symm(*m_relaxed_tc, rule);
return unify_result(rule, lhs); return unify_result(rule, lhs);
} else { } else {
return unify_result(rule, rhs); return unify_result(rule, rhs);
@ -1209,9 +1209,9 @@ class rewrite_fn {
expr Px = replace_occurrences(Pa, a, occ, vidx); expr Px = replace_occurrences(Pa, a, occ, vidx);
expr Pb = instantiate(Px, vidx, b); expr Pb = instantiate(Px, vidx, b);
expr A = m_tc->infer(a).first; expr A = m_relaxed_tc->infer(a).first;
level l1 = sort_level(m_unifier_tc->ensure_type(Pa).first); level l1 = sort_level(m_relaxed_tc->ensure_type(Pa).first);
level l2 = sort_level(m_unifier_tc->ensure_type(A).first); level l2 = sort_level(m_relaxed_tc->ensure_type(A).first);
expr H; expr H;
if (has_dep_elim) { if (has_dep_elim) {
expr Haeqx = mk_app(mk_constant(get_eq_name(), {l2}), A, a, mk_var(0)); expr Haeqx = mk_app(mk_constant(get_eq_name(), {l2}), A, a, mk_var(0));
@ -1260,9 +1260,9 @@ class rewrite_fn {
unsigned vidx = has_dep_elim ? 1 : 0; unsigned vidx = has_dep_elim ? 1 : 0;
expr Px = replace_occurrences(Pa, a, occ, vidx); expr Px = replace_occurrences(Pa, a, occ, vidx);
expr Pb = instantiate(Px, vidx, b); expr Pb = instantiate(Px, vidx, b);
expr A = m_tc->infer(a).first; expr A = m_relaxed_tc->infer(a).first;
level l1 = sort_level(m_unifier_tc->ensure_type(Pa).first); level l1 = sort_level(m_relaxed_tc->ensure_type(Pa).first);
level l2 = sort_level(m_unifier_tc->ensure_type(A).first); level l2 = sort_level(m_relaxed_tc->ensure_type(A).first);
expr M = m_g.mk_meta(m_ngen.next(), Pb); expr M = m_g.mk_meta(m_ngen.next(), Pb);
expr H; expr H;
if (has_dep_elim) { if (has_dep_elim) {
@ -1458,7 +1458,7 @@ public:
m_env(env), m_ios(ios), m_elab(elab), m_ps(ps), m_ngen(ps.get_ngen()), m_env(env), m_ios(ios), m_elab(elab), m_ps(ps), m_ngen(ps.get_ngen()),
m_tc(mk_type_checker(m_env, m_ngen.mk_child(), ps.relax_main_opaque(), UnfoldQuasireducible)), m_tc(mk_type_checker(m_env, m_ngen.mk_child(), ps.relax_main_opaque(), UnfoldQuasireducible)),
m_matcher_tc(mk_matcher_tc()), m_matcher_tc(mk_matcher_tc()),
m_unifier_tc(mk_type_checker(m_env, m_ngen.mk_child(), ps.relax_main_opaque())), m_relaxed_tc(mk_type_checker(m_env, m_ngen.mk_child(), ps.relax_main_opaque())),
m_mplugin(m_ios, *m_matcher_tc) { m_mplugin(m_ios, *m_matcher_tc) {
m_ps = apply_substitution(m_ps); m_ps = apply_substitution(m_ps);
goals const & gs = m_ps.get_goals(); goals const & gs = m_ps.get_goals();

33
tests/lean/583.lean Normal file
View file

@ -0,0 +1,33 @@
import algebra.group data.set
namespace group_hom
open algebra
-- ⁻¹ in eq.ops conflicts with group ⁻¹
-- open eq.ops
notation H1 ▸ H2 := eq.subst H1 H2
open set
open function
local attribute set [reducible]
section
variables {A B : Type}
variable [s1 : group A]
variable [s2 : group B]
include s1
include s2
variable f : A → B
definition is_hom := ∀ a b, f (a*b) = (f a)*(f b)
definition ker (Hom : is_hom f) : (set A) := {a : A | f a = 1}
theorem hom_map_id (f : A → B) (Hom : is_hom f) : f 1 = 1 :=
have P : f 1 = (f 1) * (f 1), from
calc f 1 = f (1*1) : mul_one
... = (f 1) * (f 1) : Hom,
eq.symm (mul.right_inv (f 1) ▸ (mul_inv_eq_of_eq_mul P))
theorem hom_map_inv (Hom : is_hom f) (a : A) : f a⁻¹ = (f a)⁻¹ :=
assert P : f 1 = 1, from hom_map_id f Hom,
begin
rewrite (eq.symm (mul.left_inv a)) at P,
rewrite (Hom a⁻¹ a) at P,
end
end
end group_hom

View file

@ -0,0 +1,15 @@
583.lean:31:8: error: 1 unsolved subgoal
A : Type,
B : Type,
s1 : group A,
s2 : group B,
f : A → B,
Hom : is_hom f,
a : A,
P : f a⁻¹ * f a = 1
⊢ f a⁻¹ = (f a)⁻¹
583.lean:27:8: error: failed to add declaration 'group_hom.hom_map_inv' to environment, value has metavariables
remark: set 'formatter.hide_full_terms' to false to see the complete term
λ (A : Type) (B : Type) (s1 : …) (s2 : …) (f : …) (Hom : …) (a : A),
have P [visible] : …, from …,
?M_1