From ac7f7cee63b79b0116cb5be34357d11916f5f99d Mon Sep 17 00:00:00 2001 From: Jeremy Avigad Date: Wed, 8 Jul 2015 11:55:31 +1000 Subject: [PATCH] refactor(library/theories/number_theory/primes): add some minor theorems, and rename some theorems --- library/theories/number_theory/primes.lean | 85 ++++++++++++++-------- 1 file changed, 56 insertions(+), 29 deletions(-) diff --git a/library/theories/number_theory/primes.lean b/library/theories/number_theory/primes.lean index 45348f561..3b7e335f5 100644 --- a/library/theories/number_theory/primes.lean +++ b/library/theories/number_theory/primes.lean @@ -1,9 +1,9 @@ /- Copyright (c) 2015 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. -Authors: Leonardo de Moura +Authors: Leonardo de Moura, Jeremy Avigad -Prime numbers +Prime numbers. -/ import data.nat logic.identities open bool @@ -33,6 +33,12 @@ decidable_of_decidable_of_iff _ (prime_ext_iff_prime p) lemma ge_two_of_prime {p : nat} : prime p → p ≥ 2 := assume h, obtain h₁ h₂, from h, h₁ +theorem gt_one_of_prime {p : ℕ} (primep : prime p) : p > 1 := +lt_of_succ_le (ge_two_of_prime primep) + +theorem pos_of_prime {p : ℕ} (primep : prime p) : p > 0 := +lt.trans zero_lt_one (gt_one_of_prime primep) + lemma not_prime_zero : ¬ prime 0 := λ h, absurd (ge_two_of_prime h) dec_trivial @@ -51,9 +57,9 @@ have h₁ : p ≥ 2, from ge_two_of_prime h, lt_of_succ_le (pred_le_pred h₁) lemma succ_pred_prime {p : nat} : prime p → succ (pred p) = p := -assume h, succ_pred_of_pos (lt_of_succ_le (le_of_succ_le (ge_two_of_prime h))) +assume h, succ_pred_of_pos (pos_of_prime h) -lemma divisor_of_prime {p m : nat} : prime p → m ∣ p → m = 1 ∨ m = p := +lemma eq_one_or_eq_self_of_prime_of_dvd {p m : nat} : prime p → m ∣ p → m = 1 ∨ m = p := assume h d, obtain h₁ h₂, from h, h₂ m d lemma gt_one_of_pos_of_prime_dvd {i p : nat} : prime p → 0 < i → i mod p = 0 → 1 < i := @@ -63,7 +69,7 @@ have h₂ : p ≥ 2, from ge_two_of_prime ipp, have h₃ : p ≤ i, from le_of_dvd pos h₁, lt_of_succ_le (le.trans h₂ h₃) -theorem has_divisor_of_not_prime {n : nat} : n ≥ 2 → ¬ prime n → ∃ m, m ∣ n ∧ m ≠ 1 ∧ m ≠ n := +theorem ex_dvd_of_not_prime {n : nat} : n ≥ 2 → ¬ prime n → ∃ m, m ∣ n ∧ m ≠ 1 ∧ m ≠ n := assume h₁ h₂, have h₃ : ¬ prime_ext n, from iff.mp' (not_iff_not_of_iff !prime_ext_iff_prime) h₂, have h₄ : ¬ n ≥ 2 ∨ ¬ (∀ m, m ≤ n → m ∣ n → m = 1 ∨ m = n), from iff.mp !not_and_iff_not_or_not h₃, @@ -76,10 +82,10 @@ obtain (h₈ : m ∣ n) (h₉ : ¬ (m = 1 ∨ m = n)), from iff.mp !not_implies_ have h₁₀ : ¬ m = 1 ∧ ¬ m = n, from iff.mp !not_or_iff_not_and_not h₉, exists.intro m (and.intro h₈ h₁₀) -theorem has_divisor_of_not_prime2 {n : nat} : n ≥ 2 → ¬ prime n → ∃ m, m ∣ n ∧ m ≥ 2 ∧ m < n := +theorem ex_dvd_of_not_prime2 {n : nat} : n ≥ 2 → ¬ prime n → ∃ m, m ∣ n ∧ m ≥ 2 ∧ m < n := assume h₁ h₂, have n_ne_0 : n ≠ 0, from assume h, begin subst n, exact absurd h₁ dec_trivial end, -obtain m m_dvd_n m_ne_1 m_ne_n, from has_divisor_of_not_prime h₁ h₂, +obtain m m_dvd_n m_ne_1 m_ne_n, from ex_dvd_of_not_prime h₁ h₂, assert m_ne_0 : m ≠ 0, from assume h, begin subst m, exact absurd (eq_zero_of_zero_dvd m_dvd_n) n_ne_0 end, begin existsi m, split, assumption, @@ -89,7 +95,7 @@ begin exact lt_of_le_and_ne m_le_n m_ne_n} end -theorem has_prime_divisor {n : nat} : n ≥ 2 → ∃ p, prime p ∧ p ∣ n := +theorem ex_prime_and_dvd {n : nat} : n ≥ 2 → ∃ p, prime p ∧ p ∣ n := nat.strong_induction_on n (take n, assume ih : ∀ m, m < n → m ≥ 2 → ∃ p, prime p ∧ p ∣ m, @@ -97,7 +103,7 @@ nat.strong_induction_on n by_cases (λ h : prime n, exists.intro n (and.intro h (dvd.refl n))) (λ h : ¬ prime n, - obtain m m_dvd_n m_ge_2 m_lt_n, from has_divisor_of_not_prime2 n_ge_2 h, + obtain m m_dvd_n m_ge_2 m_lt_n, from ex_dvd_of_not_prime2 n_ge_2 h, obtain p (hp : prime p) (p_dvd_m : p ∣ m), from ih m m_lt_n m_ge_2, have p_dvd_n : p ∣ n, from dvd.trans p_dvd_m m_dvd_n, exists.intro p (and.intro hp p_dvd_n))) @@ -109,7 +115,7 @@ let m := fact (n + 1) in have Hn1 : n + 1 ≥ 1, from succ_le_succ (zero_le _), have m_ge_1 : m ≥ 1, from le_of_lt_succ (succ_lt_succ (fact_gt_0 _)), have m1_ge_2 : m + 1 ≥ 2, from succ_le_succ m_ge_1, -obtain p (prime_p : prime p) (p_dvd_m1 : p ∣ m + 1), from has_prime_divisor m1_ge_2, +obtain p (prime_p : prime p) (p_dvd_m1 : p ∣ m + 1), from ex_prime_and_dvd m1_ge_2, have p_ge_2 : p ≥ 2, from ge_two_of_prime prime_p, have p_gt_0 : p > 0, from lt_of_succ_lt (lt_of_succ_le p_ge_2), have p_ge_n : p ≥ n, from by_contradiction @@ -127,26 +133,47 @@ lemma odd_of_prime {p : nat} : prime p → p > 2 → odd p := have even_p : even p, from even_of_not_odd hn, obtain k (hk : p = 2*k), from exists_of_even even_p, assert two_div_p : 2 ∣ p, by rewrite [hk]; apply dvd_mul_right, - or.elim (divisor_of_prime pp two_div_p) + or.elim (eq_one_or_eq_self_of_prime_of_dvd pp two_div_p) (λ h : 2 = 1, absurd h dec_trivial) (λ h : 2 = p, by subst h; exact absurd p_gt_2 !lt.irrefl)) -lemma coprime_of_prime_of_not_dvd {p n : nat} : prime p → ¬ p ∣ n → coprime p n := -λ pp h₂, - assert d₁ : gcd p n ∣ p, from !gcd_dvd_left, - assert d₂ : gcd p n ∣ n, from !gcd_dvd_right, - or.elim (divisor_of_prime pp d₁) - (λ h : gcd p n = 1, h) - (λ h : gcd p n = p, - assert d₃ : p ∣ n, by rewrite -h; exact d₂, - by contradiction) +theorem dvd_of_prime_of_not_coprime {p n : ℕ} (primep : prime p) (nc : ¬ coprime p n) : p ∣ n := +have H : gcd p n = 1 ∨ gcd p n = p, from eq_one_or_eq_self_of_prime_of_dvd primep !gcd_dvd_left, +or_resolve_right H nc ▸ !gcd_dvd_right + +theorem coprime_of_prime_of_not_dvd {p n : ℕ} (primep : prime p) (npdvdn : ¬ p ∣ n) : + coprime p n := +by_contradiction (assume nc : ¬ coprime p n, npdvdn (dvd_of_prime_of_not_coprime primep nc)) + +theorem not_dvd_of_prime_of_coprime {p n : ℕ} (primep : prime p) (cop : coprime p n) : ¬ p ∣ n := +assume pdvdn : p ∣ n, +have H1 : p ∣ gcd p n, from dvd_gcd !dvd.refl pdvdn, +have H2 : p ≤ gcd p n, from le_of_dvd (!gcd_pos_of_pos_left (pos_of_prime primep)) H1, +have H3 : 2 ≤ 1, from le.trans (ge_two_of_prime primep) (cop ▸ H2), +show false, from !not_succ_le_self H3 + +theorem not_coprime_of_prime_dvd {p n : ℕ} (primep : prime p) (pdvdn : p ∣ n) : ¬ coprime p n := +assume cop, not_dvd_of_prime_of_coprime primep cop pdvdn + +theorem dvd_of_prime_of_dvd_mul_left {p m n : ℕ} (primep : prime p) + (Hmn : p ∣ m * n) (Hm : ¬ p ∣ m) : + p ∣ n := +have copm : coprime p m, from coprime_of_prime_of_not_dvd primep Hm, +show p ∣ n, from dvd_of_coprime_of_dvd_mul_left copm Hmn + +theorem dvd_of_prime_of_dvd_mul_right {p m n : ℕ} (primep : prime p) + (Hmn : p ∣ m * n) (Hn : ¬ p ∣ n) : + p ∣ m := +dvd_of_prime_of_dvd_mul_left primep (!mul.comm ▸ Hmn) Hn + +theorem not_dvd_mul_of_prime {p m n : ℕ} (primep : prime p) (Hm : ¬ p ∣ m) (Hn : ¬ p ∣ n) : + ¬ p ∣ m * n := +assume Hmn, Hm (dvd_of_prime_of_dvd_mul_right primep Hmn Hn) lemma dvd_or_dvd_of_prime_of_dvd_mul {p m n : nat} : prime p → p ∣ m * n → p ∣ m ∨ p ∣ n := -λ h₁ h₂, by_contradiction (λ h, - obtain (n₁ : ¬ p ∣ m) (n₂ : ¬ p ∣ n), from iff.mp !not_or_iff_not_and_not h, - assert c₁ : coprime p m, from coprime_of_prime_of_not_dvd h₁ n₁, - assert n₃ : p ∣ n, from dvd_of_coprime_of_dvd_mul_left c₁ h₂, - by contradiction) +λ h₁ h₂, by_cases + (assume h : p ∣ m, or.inl h) + (assume h : ¬ p ∣ m, or.inr (dvd_of_prime_of_dvd_mul_left h₁ h₂ h)) lemma dvd_of_prime_of_dvd_pow {p m : nat} : ∀ {n}, prime p → p ∣ m^n → p ∣ m | 0 hp hd := @@ -166,11 +193,11 @@ lemma coprime_primes {p q : nat} : prime p → prime q → p ≠ q → coprime p λ hp hq hn, assert d₁ : gcd p q ∣ p, from !gcd_dvd_left, assert d₂ : gcd p q ∣ q, from !gcd_dvd_right, - or.elim (divisor_of_prime hp d₁) + or.elim (eq_one_or_eq_self_of_prime_of_dvd hp d₁) (λ h : gcd p q = 1, h) (λ h : gcd p q = p, have d₃ : p ∣ q, by rewrite -h; exact d₂, - or.elim (divisor_of_prime hq d₃) + or.elim (eq_one_or_eq_self_of_prime_of_dvd hq d₃) (λ h₁ : p = 1, by subst p; exact absurd hp not_prime_one) (λ he : p = q, by contradiction)) @@ -182,12 +209,12 @@ by_cases (λ h : p ∣ i, or.inr h) (λ h : ¬ p ∣ i, or.inl (coprime_of_prime_of_not_dvd Pp h)) -lemma divisor_of_prime_pow {p : nat} : ∀ {m i : nat}, prime p → i ∣ (p^m) → i = 1 ∨ p ∣ i +lemma eq_one_or_dvd_of_dvd_prime_pow {p : nat} : ∀ {m i : nat}, prime p → i ∣ (p^m) → i = 1 ∨ p ∣ i | 0 := take i, assume Pp, begin rewrite [pow_zero], intro Pdvd, apply or.inl (eq_one_of_dvd_one Pdvd) end | (succ m) := take i, assume Pp, or.elim (coprime_or_dvd_of_prime Pp i) (λ Pcp, begin rewrite [pow_succ], intro Pdvd, - apply divisor_of_prime_pow Pp, + apply eq_one_or_dvd_of_dvd_prime_pow Pp, apply dvd_of_coprime_of_dvd_mul_right, apply coprime_swap Pcp, exact Pdvd end)